Weak-coupling expansion for the pressure of hot QCD — Introduction —

Mikko Laine (University of Bielefeld, Germany)

1. What is it?

- 2. Why is it relevant?
- 3. Where are we now?
- 4. What should be done?

$$\mathcal{L}_{\rm QCD} = \frac{1}{4g^2} \sum_{a=1}^{N_{\rm c}^2 - 1} F^a_{\mu\nu} F^a_{\mu\nu} + \sum_{i=1}^{N_{\rm f}} \bar{\psi}_i [\gamma_{\mu} D_{\mu} + m_i] \psi_i \; .$$

Thermodynamics:

Minus grand canonical free energy density, i.e. pressure.

$$p(T, \boldsymbol{\mu}) \equiv \lim_{V \to \infty} \frac{T}{V} \ln \left\{ \operatorname{Tr} \left[\exp \left(-\frac{\mathcal{H}_{\mathsf{QCD}} - \mu_i \mathcal{Q}_i}{T} \right) \right] \right\}$$

where \mathcal{H}_{QCD} is the Hamilton operator, and \mathcal{Q}_i are quark number operators. Let $p(T) \equiv p(T, \mathbf{0})$.

,

Why is it relevant?

In cosmology, the cooling rate of the Universe is

$$\frac{\mathrm{d}T(t)}{\mathrm{d}t} = -\frac{\sqrt{24\pi}}{m_{\mathrm{Pl}}} \frac{\sqrt{e(T)}}{\mathrm{d}\ln s(T)/\mathrm{d}T} \; , \label{eq:dT}$$

where s(T) = dp(T)/dT, e(T) = Ts(T) - p(T).

Cosmological relics (dark matter, background radiation, etc) are born when some reaction time $\tau(T)$ becomes longer than the age of the Universe t(T).

For instance, WIMPs of mass m decouple at $T \sim m/25$. For m = 10...1000 GeV, T = 0.4...40 GeV, in which range QCD dominates the equation of state.

Hindmarsh, Philipsen 2005

Or: right-handed "sterile" neutrinos with $m_{\nu} \sim {\rm keV}$ can be warm dark matter decoupling at $T \sim 150~{\rm MeV}$.

Abazajian, Fuller 2002 Asaka, Shaposhnikov 2005

The dark matter relic density is determined (indirectly) within few % by forthcoming CMB experiments, so theoretical errors should be reduced to the same level.

In heavy ion collision experiments, the expansion of the system, after thermalisation, is determined by

$$T^{\mu\nu} = [p(T) + e(T)]u^{\mu}u^{\nu} - p(T)g^{\mu\nu}, \quad \partial_{\mu}T^{\mu\nu} = 0 ,$$

where $u^{\mu}(t, \mathbf{x})$ is the flow velocity, and $T = T(t, \mathbf{x})$.

After hydrodynamic expansion the system hadronises at $T\sim 100...150~{\rm MeV}.$ The hadron spectrum observed depends indirectly on p(T).

In particular, certain observables like the "elliptic flow" are supposed to probe early stages with $T \gtrsim 200$ MeV.

Current status

 $T \gg 200~{\rm MeV} \Rightarrow$ asymptotic freedom \Rightarrow weakly interacting partons, described by QCD pert. theory.

$$p_{\rm SB}(T) \equiv \frac{\pi^2 T^4}{90} \left[2(N_{\rm c}^2 - 1) + \frac{7}{2} N_{\rm c} N_{\rm f} \right] \approx 5.2 T^4$$

But one can also compute corrections to $p_{SB}(T)$ in a power series in the QCD coupling constant g.

$$g^2$$
:Shuryak 1978; Chin 1978 g^3 :Kapusta 1979 $g^4 \ln(1/g)$:Toimela 1983 g^4 :Arnold, Zhai 1994 g^5 :Zhai, Kastening 1995; Braaten, Nieto 1995 $g^6 \ln(1/g)$:Schröder 2002; Kajantie et al 2002

: The structure of the perturbative series is non-trivial.

The reason: interactions make it a **multiscale system**, generating colour-electric screening at $|\mathbf{k}| \sim m_{\rm E} \sim gT$, and colour-magnetic screening at $|\mathbf{k}| \sim g^2T$.

Expansion parameter:

$$\epsilon \sim g^2 n_b(|\mathbf{k}|) = \frac{g^2}{\exp(|\mathbf{k}|/T) - 1} \stackrel{|\mathbf{k}| \leq T}{\approx} \frac{g^2 T}{|\mathbf{k}|} \,.$$

Method for treating this: effective field theories.

Contributions: $(\Lambda_{E}, \Lambda_{M} \text{ are "matching scales"})$

$$\begin{split} \frac{\delta p_{(1)}}{T^4} &\sim 1 + g^2 + g^4 \ln \frac{2\pi T}{\Lambda_{\rm E}} + g^6 \ln \frac{2\pi T}{\Lambda_{\rm E}} + \dots \,, \\ \frac{\delta p_{(2)}}{T^4} &\sim g^3 + g^4 \ln \frac{\Lambda_{\rm E}}{m_{\rm E}} + g^5 + g^6 \ln \frac{\Lambda_{\rm E}}{m_{\rm E}} + g^6 \ln \frac{m_{\rm E}}{\Lambda_{\rm M}} + \dots \\ \frac{\delta p_{(3)}}{T^4} &\sim g^6 \left(\ln \frac{\Lambda_{\rm M}}{g^2 T} + [\text{non-pert}] \right) \,. \end{split}$$

Status: coefficients up to 4-loop logarithms are known analytically, but some "constant" 4-loop terms not.

Numerical evaluation $(N_{\rm f} = 0)$:

Kajantie, Laine, Rummukainen, Schröder 2002

 \Rightarrow Interactions are strong even at high temperatures (sQCD): full order g^6 might work, but need not to.

So let us try a more conservative approach.

Only carry out step (1) analytically, and study

$$S_{\text{EQCD}} = \int d^3 \mathbf{x} \, \mathcal{L}_{\text{EQCD}} ,$$

$$\mathcal{L}_{\text{EQCD}} = \frac{1}{2} \operatorname{Tr}[F_{ij}^2] + \operatorname{Tr}[D_i, A_0]^2 + m_{\text{E}}^2 \operatorname{Tr}[A_0^2] + \lambda_{\text{E}} (\operatorname{Tr}[A_0^2])^2 ,$$

where $F_{ij} = (i/g_E)[D_i, D_j]$, $D_i = \partial_i - ig_E A_i$, $A_i = A_i^a T^a$, and $A_0 = A_0^a T^a$, non-perturbatively.

[In practice "non-perturbatively" probably means "numerically", although it does not need to be so].

This should be a safe procedure, down to low T:

On the contrary, perturbation theory with EQCD, leading to odd powers, need not converge in general.

The master formula for the physical pressure:

$$\frac{p_{\text{QCD}}}{T^4} = 1 + g^2 + g^4 \left(\ln \frac{2\pi T}{\Lambda_{\text{E}}} + C_4 \right) + g^6 \left(\ln \frac{2\pi T}{\Lambda_{\text{E}}} + C_6 \right) + \mathcal{O}(g^8) + \frac{p_{\text{EQCD}}}{T^4} + \frac{p_{\text{EQCD}}}{T^4} ,$$
$$\frac{p_{\text{EQCD}}}{T^4} = \lim_{V \to \infty} \frac{1}{VT^3} \ln \left[\int_{\Lambda_{\text{E}}} \mathcal{D}A_i \mathcal{D}A_0 \exp\left(-S_{\text{EQCD}}\right) \right] .$$

Here $p_{\rm EQCD}/T^4$ depends "trivially" on $\Lambda_{\rm E},g_{\rm E}^2$, and non-trivially on the dimensionless combinations

$$x \equiv \frac{\lambda_{\rm E}}{g_{\rm E}^2} , \quad y \equiv \frac{m_{\rm E}^2}{g_{\rm E}^4} .$$

We need to know p_{EQCD}/T^4 in a part of the (x, y)-plane.

Absolute value not measurable, but derivatives are:

$$\frac{\partial}{\partial y} \left\{ \frac{p_{\rm EQCD}}{T^4} \right\} \propto \left\langle \frac{{\rm Tr}[A_0^2]}{g_{\rm E}^2} \right\rangle \ , \quad \frac{\partial}{\partial x} \left\{ \frac{p_{\rm EQCD}}{T^4} \right\} \propto \dots \, .$$

Challenge 1: determine C_6 .

- Compute 4-loop $p_{\rm QCD}$ in full QCD with a certain UV and IR regularization.
- Subtract 4-loop $p_{\rm EQCD}$ computed with the same UV and IR regularization.
- If we use **dimensional regularization** as the only UV and IR regularization, then p_{EQCD} vanishes exactly, and we "only" need to do un-resummed 4-loop sum-integrals on the full QCD side.

 \Rightarrow talks by Y. Schröder, A. Vuorinen

Challenge 2: To obtain p_{EQCD} from $\partial_y \{p_{\text{EQCD}}\}$, $\partial_x \{p_{\text{EQCD}}\}$, we need to fix the integration constant.

• This can be achieved by going to $y \to \infty$, where steps (2), (3) can be reliably carried out after all: we are then left with $\mathcal{L}_{MQCD} = \frac{1}{2} \operatorname{Tr}[F_{ij}^2] + \dots$

 \Rightarrow talk by P. Giovannangeli

• The resulting contribution has been determined nonperturbatively on the lattice, but a conversion to dimensional regularization remains to be completed.

 \Rightarrow talks by F. Di Renzo, C. Torrero

• Suggestion by M. Shaposhnikov: could one not stay within EQCD, and consider $y \rightarrow -\infty$, for $N_c = 2$?

Challenge 3: In order to use this philosophy, we need to measure $\partial_y \{p_{\text{EQCD}}\}$, $\partial_x \{p_{\text{EQCD}}\}$ up to $y \gg 1$.

- However there is then a heavy scalar on the lattice.
- We need a small lattice spacing to account for it correctly: $a \ll 2\pi/M$.

 \Rightarrow talk by A. Hietanen

• But how small is small enough? Need to know whether there can be $\mathcal{O}(a \ln a)$ effects, and it would also help to compute $\mathcal{O}(a)$ effects explicitly.

 \Rightarrow for possible techniques, guest talk by A. Rago

Further challenges

If all of this could be achieved, and maybe even before that, one might also consider (in arbitrary order):

Dependence on N_c : Would something be simpler for $N_c = 2$? Would something be simpler for $N_c \gg 3$?

Dependence on $N_{\rm f}$: We may expect better lattice data at $N_{\rm f} > 0$ in the near future, hopefully with Wilson but certainly with "Asqtad"-improved staggered quarks.

"Though purists howled — and are still howling — the technique works" [New Scientist, 13 Aug 2005].

"Trivially": behaviour of observables other than p(T).

• Entropy density, s(T) = dp(T)/dT.

 \Rightarrow Blaizot, lancu, Rebhan

 For comparison with lattice and possibly for applications in cosmology: interaction measure / trace anomaly,

$$T^{5} \frac{\mathrm{d}}{\mathrm{d}T} \left[\frac{p(T)}{T^{4}} \right] = e(T) - 3p(T) \propto \beta_{0} T^{4} .$$

Murayama et al, hep-ph/0403019.

Dependence on chemical potentials

• Susceptibilities
$$\frac{\partial^2}{\partial \mu_i \partial \mu_j} p(T, \boldsymbol{\mu})$$
.

To $g^6 \ln(1/g)$: Vuorinen 2003

• The complete function $p(T, \mu)$.

Ipp et al, in preparation

At least susceptibilities should in the end be extended to the full order g^6 .

Dependence on quark masses

• Susceptibilities
$$\frac{\partial^2}{\partial m_i \partial m_j} p(T)$$
.

To $g^6 \ln(1/g)$: Laine and Schröder, in preparation

• The whole dependence of p(T) on quark masses would be as important as $p(T, \mu)$, but may technically be even harder (at least as far as analytic results are concerned).

Is even $\mathcal{O}(g^2)$ in the literature?

Indeed, one naively thinks it's enough to interpolate between various $N_{\rm f}$'s, but that's not really the case.

SB for Cosmology:

SB for Heavy lons:

Conclusions

There is still work to do.

Organizational

Coffee breaks: 10.30, 15.30.

Lunches: 12.30.

Dinners: 19.30.

Fee: 60€.