Das CPT-Theorem

Abbildung 1: Illustration der Anwendung von Parität P, Ladungsumkehr C und Zeitumkehr T in der Zusammenstellung des CPT-Theorems aus Sicht eines außenstehenden Beobachters.

Symmetrien und Erhaltungsgrößen in der Physik

Erhaltungsgröße / Symmetrie	stark	elmagn.	schwach
Energie E , Impuls \vec{p} , Drehimpuls \vec{l}	•	•	•
elektrische Ladung $q,$ Leptonen-/Baryonen-Zahl $n_{\rm L}/n_{\rm B}$	•	•	•
Strangeness s	•	•	×
Charmness (Charm) c	•	•	×
Bottomness (Beauty) b , Topness (Truth) t	•	•	×
Isospin I_s	•	×	×
Parität \hat{P}	•	•	×
Ladungskonjugation \hat{C}	•	•	×
Zeitumkehr \hat{T}	•	•	×
Raum-/Ladungumkehr-Symmetrie $\hat{C}\hat{P}$	•	•	×
Zeit-/Raum-/Ladungsumkehr-Symmetrie $\hat{C}\hat{P}\hat{T}$	•	•	•

 Tabelle 1: Übersicht der Erhaltung "•" bzw. Verletzung "ד von Symmetrien und physikalischen Größen im Zusammenhang mit den einzelnen Wechselwirkungen.

Konstituenten der betrachteten Elementarteilchen

Pionen / Λ	K-Mesonen		D-Mesonen		B-Mesonen	
$\pi^0 = u\bar{u} - d\bar{d}$	$K^0 = d\bar{s}$	$\bar{K}^0 = s\bar{d}$	$D^0 = c\bar{u}$	$\bar{D}^0 = u\bar{c}$	$B^0 = d\bar{b}$	$\bar{B}^0 = b\bar{d}$
$\pi^+ = u \bar{d}$	$K^+ = u\bar{s}$	$K^- = s \bar{u}$	$D^+ = c\bar{d}$	$D^- = d\bar{c}$	$B^+ = u\bar{b}$	$B^- = b\bar{u}$
$\pi^- = d\bar{u}$			$D_s^+ = c\bar{s}$	$D_s^- = s\bar{c}$	$B_c^+ = c\bar{b}$	$B_c^- = b\bar{c}$
$\Lambda = uds$					$B_s^+ = s\bar{b}$	$B_s^- = b\bar{s}$

Tabelle 2: Quark-Zusammensetzung der betrachteten Teilchen.

Starke Erzeugung von Kaonen

Abbildung 2: Erzeugung neutraler K^0 - und \overline{K}^0 -Mesonen durch die starke Wechselwirkung, wobei nur diejenigen Gluonen mit punktierten Vertizes am Erzeugungsprozess beteiligt sind.

Oszillation bzw. Mischung von neutralen Kaonen

Abbildung 3: K^0 - \bar{K}^0 -Kaonen-Mischung bzw. -Oszillation durch Einfluß der schwachen Wechselwirkung.

Zerfallsprozesse in der Weisskopf-Wigner-Approximation

Problem: Exponentieller Zerfall führt zu *komplexen* Energieeigenwerten:

$$|\psi(t)\rangle = \mathrm{e}^{-\mathrm{i}\hat{H}t}|\psi(0)\rangle = \mathrm{e}^{-\mathrm{i}E_0t}|\psi^{(0)}\rangle \qquad \Longrightarrow \qquad A(t) = \langle\psi^{(0)}|\psi(t)\rangle = \langle\psi^{(0)}|\mathrm{e}^{-\mathrm{i}E_0t}|\psi^{(0)}\rangle$$

Lösung: Ignoriere dieses Problem und betrachte die effektive Schrödinger-Gleichung:

$$i\frac{\partial}{\partial\tau}|\psi(\tau)
angle = \left(m - i\frac{\Gamma}{2}
ight)|\psi(\tau)
angle \qquad bzw. \qquad i\frac{\partial}{\partial\tau}|\psi(\tau)
angle = \hat{\mathcal{M}}|\psi(\tau)
angle$$

mit der sogenannten komplexen Masse, zusammengesetzt aus einer reellen Masse m und der Zerfallsrate Γ .

Schwacher/Starker Pionen-Zerfall des neutralen Kaons

Einfluss der CP-Symmetrie im Zerfallsprozess

Kaonen zeigen *pseudoskalares* Verhalten:

$$\begin{array}{ccc} \hat{P}|K^{0}\rangle = -|K^{0}\rangle & \text{ und } & \hat{C}|K^{0}\rangle = |\bar{K}^{0}\rangle \\ \hat{P}|\bar{K}^{0}\rangle = -|\bar{K}^{0}\rangle & \text{ und } & \hat{C}|\bar{K}^{0}\rangle = |K^{0}\rangle \end{array} \implies \qquad \begin{array}{ccc} \hat{C}\hat{P}|K^{0}\rangle = -|\bar{K}^{0}\rangle \\ \hat{C}\hat{P}|\bar{K}^{0}\rangle = -|K^{0}\rangle \end{array}$$

Eigenzustände des $\hat{C}\hat{P}$ -Operators: _

.

$$\begin{split} |K_1^0\rangle &:= \frac{1}{\sqrt{2}} \left(|K^0\rangle - |\bar{K}^0\rangle \right) & \hat{C}\hat{P}|K_1^0\rangle = |K_1^0\rangle \\ |K_2^0\rangle &:= \frac{1}{\sqrt{2}} \left(|K^0\rangle + |\bar{K}^0\rangle \right) & \hat{C}\hat{P}|K_2^0\rangle = -|K_2^0\rangle \end{split}$$

Bei CP-Symmetrie kann die Massenmatrix keine Übergänge zwischen CP-Eigenzuständen $|K_1^0\rangle$ und $|K_2^0\rangle$ bewirken!

CP-Eigenzustände $|K_1^0\rangle, |K_2^0\rangle = \mathcal{M}$ -Eigenzustände $|K_S\rangle, |K_L\rangle$ \implies

CP-Eigenzustände zeigen exponentielles Zerfallsverhalten \implies

 $\begin{array}{ll} K_{\rm S} \to \pi^+ \pi^- & \text{und} & K_{\rm S} \to \pi^0 \pi^0 \\ K_{\rm L} \to \pi^+ \pi^- \pi^0 & \text{und} & K_{\rm L} \to 3\pi^0 = \pi^0 \pi^0 \pi^0 \end{array}$ Kurzlebiger Zerfall: Langlebiger Zerfall:

Aus Drehimpulserhaltung (Kaonen haben Spin 0) folgt Zuordnung:

$$\begin{split} |K_{\rm S}\rangle &= |K_1^0\rangle \qquad (\hat{C}\hat{P}\text{-}\text{Eigenwert }+1) \\ |K_{\rm L}\rangle &= |K_2^0\rangle \qquad (\hat{C}\hat{P}\text{-}\text{Eigenwert }-1) \end{split}$$

Da der langlebige Zustand einen von +1 verschiedenen Eigenwert hat, kann er deshalb nicht in zwei Pionen zerfallen.

 $K_{\rm L} \rightarrow \pi \pi$ wird beobachtet Aber:

Führe deshalb einen Verletzungs-Parameter

$$\varepsilon_K := \frac{A(|K_{\rm L}\rangle \to |\pi\pi\rangle_{l=0})}{A(|K_{\rm S}\rangle \to |\pi\pi\rangle_{l=0})}$$

ein.

Elemente des Standardmodells

• Quarks im Standard-Modell:

$$\begin{array}{cccc} \overbrace{Q_{1\mathrm{L}}'=\begin{pmatrix}u_{\mathrm{L}}'\\d_{\mathrm{L}}'\end{pmatrix}}^{1. \ \mathrm{Familie}} & \overbrace{Q_{2\mathrm{L}}'=\begin{pmatrix}c_{\mathrm{L}}'\\s_{\mathrm{L}}'\end{pmatrix}}^{2. \ \mathrm{Familie}} & \overbrace{Q_{3\mathrm{L}}'=\begin{pmatrix}t_{\mathrm{L}}'\\b_{\mathrm{L}}'\end{pmatrix}}^{3. \ \mathrm{Familie}} & \overbrace{Q_{2\mathrm{L}}'=\begin{pmatrix}s_{\mathrm{L}}'\\s_{\mathrm{L}}'\end{pmatrix}}^{3. \ \mathrm{Familie}} & \overbrace{Q_{3\mathrm{L}}'=\begin{pmatrix}t_{\mathrm{L}}'\\b_{\mathrm{L}}'\end{pmatrix}}^{3. \ \mathrm{Familie}} & \overbrace{Q_{2\mathrm{L}}'\times U(1)_{\mathrm{Y}}}^{\mathrm{Symmetrie:}} \\ \overbrace{Q_{4\mathrm{R}}'}^{u_{\mathrm{R}}'} & c_{\mathrm{R}}' & t_{\mathrm{R}}'\\ d_{\mathrm{R}}' & s_{\mathrm{R}}' & b_{\mathrm{R}}' & \Biggr{}^{\mathrm{rechtshändige}}_{\mathrm{Quark-Singuletts}} & U(1)_{\mathrm{Y}} \end{array}$$

• Elektroschwache Lagrange-Dichte:

 $\mathcal{L}_{\rm SM} = \mathcal{L}_{\rm Kinetik} + \mathcal{L}_{\rm Higgs} + \mathcal{L}_{\rm Yukawa}$

• Higgs-Feld:

$$\Phi(x) := \begin{pmatrix} \phi^{\dagger}(x) \\ \phi^{0}(x) \end{pmatrix} \xrightarrow{\text{passende SU(2)-Eichung}} \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v + \sigma(x) \end{pmatrix}$$

• Konjugiertes Higgs-Feld:

$$\tilde{\Phi}(x) := -\mathrm{i}\sigma_2 \Phi^*(x) = \begin{pmatrix} \left(\phi^0(x)\right)^* \\ -\left(\phi^\dagger(x)\right)^* \end{pmatrix} \xrightarrow{\text{Eichung von } \Phi} \frac{1}{\sqrt{2}} \begin{pmatrix} v + \sigma(x) \\ 0 \end{pmatrix},$$

• Lagrange-Teil der Yukawa-Wechselwirkungen:

$$\mathcal{L}_{\text{Yukawa}} = \sum_{\substack{i,j=1\\ ,j=1\\ j. \text{ Familie mit Quarks} \\ \text{ der } i. \text{ Familie}}^{3} \left[\underbrace{C_{ij}^{u} \overline{Q'_{iL}} \Phi u'_{jR}}_{j. \text{ Familie mit Quarks}} + \underbrace{C_{ij}^{d} \overline{Q'_{iL}} \Phi d'_{jR}}_{j. \text{ Familie mit Quarks}} + \text{h.c.} \right]$$

Konstruktion der CKM-Matrix

• Einsetzen des Higgs-Felds und Aufspalten liefert:

$$\mathcal{L}_{\text{Yukawa}} = \sum_{i,j=1}^{3} \underbrace{\frac{v}{\sqrt{2}} \left[C_{ij}^{u} \overline{u'_{i\text{L}}} u'_{j\text{R}} + C_{ij}^{d} \overline{d'_{i\text{L}}} d'_{j\text{R}} + \text{h.c.} \right]}_{\text{Quarkmassen-Term}} + \frac{\sigma(x)}{\sqrt{2}} \left[C_{ij}^{u} \overline{u'_{i\text{L}}} u'_{j\text{R}} + C_{ij}^{d} \overline{d'_{i\text{L}}} d'_{j\text{R}} + \text{h.c.} \right]}_{\text{Quarkmassen-Term}}$$

• Diagonalisiere 3×3 -Matrizen $C^u := [C^u_{ij}]$ und $C^d := [C^d_{ij}]$ über eine bi-unitäre Transformation:

$$V_{uL}^{\dagger} C^{u} V_{uR} = M^{u} := \operatorname{diag}(m_{u}, m_{c}, m_{t}) \quad \text{und} \quad V_{uL}, V_{uR}, V_{dL}, V_{dR} \in \mathrm{U}(3)$$
$$V_{dL}^{\dagger} C^{d} V_{dR} = M^{d} := \operatorname{diag}(m_{d}, m_{s}, m_{b}) ,$$

Die Diagonalmatrizen M^u und M^d enthalten die **Quark-Ruhemassen**.

 $\bullet \ {\rm Definiere} \ {\bf Cabibbo-Kobayashi-Maskawa-Quarkmischungs-Matrix}$

$$V_{\text{CKM}} := V_{u\text{L}}V_{d\text{L}}^{\dagger} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \in U(3)$$

Parametrisierungen und Verletzungs-Bedingung

• Standard-Parametrisierung der CKM-Matrix:

• Wolfenstein-Parametrisierung (Approximation):

$$V_{\rm CKM} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} \qquad \begin{array}{c} \lambda = \sin\theta \\ {\rm mit} & A\lambda^2 = \sin\varphi \\ \sin\vartheta e^{-i\delta} = A\lambda^3(\rho - i\eta) \\ (\bar{\rho}, \bar{\eta}) := (\rho, \eta)(1 - \frac{\lambda^2}{2}) \end{array}$$

Satz (CP-Verletzung im Quark-Sektor): Eine Phase $\delta_{KM} \neq k\pi$ für $k \in \mathbb{Z}$ in der Standard-Parametrisierung der CKM-Matrix führt zu einer Verletzung der \hat{CP} -Invarianz der Lagrange-Dichte.

Unitaritäts-Dreiecke

• Unitaritätsbedingung $V_{\text{CKM}}^{\dagger}V_{\text{CKM}} = V_{\text{CKM}}V_{\text{CKM}}^{\dagger} = \mathbb{E}$ in Komponentenform:

$$\sum_{\alpha} V_{i\alpha}^* V_{j\alpha} = \delta_{ij} \quad \text{und} \quad \sum_{i} V_{i\alpha}^* V_{i\beta} = \delta_{\alpha\beta}$$

• Unitaritäts-Dreieck: Betrachte Summanden (d.h. komplexe Zahlen) als Vektoren in C.

$$\sum_{i=1}^{3} V_{i1}V_{i3}^{*} = V_{11}V_{13}^{*} + V_{21}V_{23}^{*} + V_{31}V_{33}^{*} = V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0$$

- Reskaliertes Unitaritäts-Dreieck: Richte eine Dreiecksseite zu \mathbb{R} aus und normiere diese.
- Winkel des Dreiecks:

$$\alpha := \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right) \qquad \beta := \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right) \qquad \gamma := \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)$$

Abbildung 4: Fehlerbereiche des Standardmodells und Darstellung des reskalierten Unitaritäts-Dreiecks.