Classical Statistical Models
|
Content: |
► Statistical Processes and Random Walks ► Percolation ► Spin Models, Dimer Models, Vertex Models ► Phase Transitions, Universality ► Low- and High Temperature Expansion, Dual Formulations, Transfer Matrix Method | |
Prequisites: |
Course in Statistical Mechanics |
3-state Potts Model on 20x20 square lattice, Metropolis algorithm |
|||||
T=0.8 | T=1.0 | T=1.2 | T=1.4 | T=1.6 | |
3-state Potts Model on 20x20 square lattice, Worm algorithm |
► Lecture 1 (12. April '16): Introduction, Probability Distributions
► Lecture 2 (20. April '16): Stochastic Processes
► Lecture 3 (27. April '16): Markov Chains
► Lecture 4 (04. May' 16): Random Walks
► Lecture 5 (11. May '16): Critical Phenomena
► Lecture 6 (18. May '16): Ising Model, Lattice Gas
► Lecture 7 (25. May '16): Ising Model: Transfer Matrix, Mean Field
► Lecture 8 (01. June '16): Ising Model: Low- and High-T expansion, Duality
► Lecture 9 (08. June '16): Dimer Models
► Lecture 10 (15. June '16): Potts Model
► Lecture 11 (22. June '16): Percolation
► Lecture 12 (29. June '16): Vertex Models
► Lecture 13 (06. July '16): Hard Discs
► Lecture 14 (13. July '16): Hard Spheres
► Lecture 15 (20. July '16): Outlook: Quantum Models, Self-ogranized Criticality
► To qualify for the oral exam (you can earn 5 CP),
you should attend the exercises regularly.
► The sheets consist of about 50% computing exercises and 50% paper and pencil exercises.
The points of each sheet sum up to 20 points.
► Jangho Kim will provide
solutions to selected exercises which involve small computer simulations
Andrey Andreyevich Markov ► Sheet 1 (Markov Chain) Solutions to Computing Exercises |
Stanislaw Marcin Ulam ► Sheet 2 (Monte Carlo Method) Solutions to Computing Exercises |
Ludwig Eduardo Boltzmann ► Sheet 3 (Boltzmann Distribution) |
||||||
Ernst Ising ► Sheet 4 (Ising Model) |
Renfrey Potts ► Sheet 5 (Potts Model) |
Pieter Willem Kasteleyn ► Sheet 6 (Fortuin-Kasteleyn Representation) |
||||||
► David P. Landau, Kurt Binder, A Guide to Monte Carlo Simulations in Statistical Physics, Cambridge University Press
► Werner Krauth: Statistical Mechanics: Algorithms and Computations, Oxford University Press
► R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press
► D. A. Lavis, G. M. Bell: Statistical Mechanics of Lattice Systems, Springer
► Charles M. Grinstead, J. Laurie Snell: Introduction to Probability
► Website of Werner Krauth, including some illustrations from his book: http://www.lps.ens.fr/~krauth/index.php/Main_Page
► Percolation: http://www.physics.buffalo.edu/gonsalves/Java/Percolation.html
► Drunken Sailor Problem (Random Walk): http://www.chem.uoa.gr/applets/AppletSailor/Appl_Sailor2.html
► Self-avoiding random walk: http://polymer.bu.edu/java/java/saw
► Applets for 2D Lennard-Jones System, Ising Model, 2D Dipoles: http://personal-pages.ps.ic.ac.uk/~achremos/Applets-page.htm
► Applet of Ising Model and XY Model: https://itp.tugraz.at/MML/isingxy
► Anharmonic Oscillator: http://fisteo12.ific.uv.es/~santamar/arcapplets.html