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1. One de�nition of the habitable zone, is that region of space around a star, where the average temperature
of a planetary body would be between 0◦C and 100◦C.

(a) Calculate the habitable zone for the Solar System. To do so, equate the incoming �ux from the Sun
with the outgoing �ux from the planet's black-body radiation (use the Stefan-Boltzmann law for this).
In considering the incident solar radiation, assume an albedo (i.e. the fraction of incident light that is
directly re�ected) of 0.31, as for the Earth.

Solution:

The incident radiation from the Sun can be calculated from its luminosity (which in turn could
have been derived from its black-body �ux as given by the Stefan-Boltzmann law; integrated over
its surface):

Fin =
L�

4πD2

with D the distance between the Sun and the Earth (i.e. 1AU). The energy absorbed by the Earth,
then becomes:

Ein = FinπR
2
Earth(1 −A) =

L�R
2
Earth (1 −A)

4D2

where A = 0.31 is the Earth's albedo, i.e. the fraction of the incoming �ux that is not absorbed.

The energy lost in black-body radiation, is given by:

Eout = 4πR2
EarthσT

4
Earth

with σT 4
Earth the blackbody �ux as de�ned by the Stefan-Boltzmann law.

Equating these two, we get:

4πR2
EarthσT

4
Earth =

L�R
2
Earth (1 −A)

4D2

or, after re-writing:

D =

√
L� (1 −A)

16πσT 4
Earth

=

√
3.846 × 1026 W × 0.69

16π5.67 × 10−8 W/m2/K4 × T 4
Earth

=
0.96 × 1016 mK2

T 2

For T = 273 K, this becomes:

Dmax = 1.29 × 1011 m = 0.86 AU

and for T = 373 K, we get:
Dmin = 6.94 × 1010 m = 0.46 AU.

This is obviously a suspicious result, because the Earth (which must be in the habitable zone), is
not included. The reason this is the case, is because we ignored many details, the most important
one being the greenhouse e�ect, which heats planets and therefore moves the habitable zone further
out.

(b) Same question, but now for an Earth-like planet orbiting Aldebaran, which has a temperature of 3910K
and a radius of 55.2 R�.
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Solution:

The total luminosity can be calculated from Stefan-Boltzmann's law, integrated over the surface
of the star:

LA = σT 4
A4πR2

A

where the subscript A indicates �Aldebaran�. Hence, we can re-write our equation from question
a) as follows:

D =

√
σT 4

A4πR2
A (1 −A)

16πσT 4
planet

=

√
T 4
AR

2
A(1 −A)

4T 4
planet

.

Or:

D =

√
39104 (55.2 × 6.96 × 108)

2
(1 −A)

4T 4
planet

.

From this, it follows that a �rst estimate of the habitable zone around Aldebaran would be between
11.7AU and 21.8AU. Note that this is again an underestimate, since the greenhouse e�ect would
push this range to larger radii.

2. If there are N stars in a volume V , a fraction q of which are habitable, estimate the average distance
between two habitable planets. (Hint: this is a trivial question: base it on the average volume per star.)
Apply your solution to the Solar neighbourhood, where we have roughly 47 star (systems) within 520 pc3.
Assume 1% and respectively 0.001% of these stars have habitable planets.

Solution:

There are two essentially equivalent approaches to this question. A relatively simple approach, is as
follows:

The average volume per star, is V/N . To translate this volume in a typical distance, we can take the
cubic root, giving us a distance of 3

√
V/N . If only a fraction q of the planets is habitable, we include

that factor as follows:

D ≈ 3

√
V

Nq
.

Using N = 47, V = 520 pc3 and q = 0.01, this gives:

D ≈ 10.3 pc.

for 0.001% of star systems, this increases to 103 pc.

Alternatively, you could get a potentially more precise solution like this:

The stellar density is ρ = Nq/V . Estimating the radius of a sphere that would have exactly one star,
given this density, we get:

N(R) = ρ
4

3
πR3 = 1,

or:

R = 3

√
3

4πρ
= 3

√
3V

4πNq
.

From this, it follows that, for q = 0.01: D = 6.4 pc and for q = 0.001%, D = 64 pc.

Both approaches are acceptable since in reality the stellar distribution will be so inhomogeneous that
whatever calculation we can make, will only ever get us an order-of-magnitude estimate at best. From
that perspective, 103 pc is e�ectively identical to 64 pc.

3. (O�-topic question:) As you know, �ux (expressed in W/m2) is luminosity (in W) per area. In radio
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astronomy, typically the unit of �ux density is used instead, adding in the bandwidth of the radiation. In
SI units, �ux density would be expressed in W/m2/Hz, but for any practical purpose, the Jansky is used,
de�ned as: 1 Jy = 10−26 W/m2/Hz, because most typical radio astronomy sources have �uxes of the order
1 Jy to 1mJy. Now consider a microwave oven with a power of 1 kW, placed on the moon. Suppose its
power is emitted across a bandwidth of 100MHz, centred at 2.7GHz. Calculate the �ux density of this
microwave oven, on Earth. Would this object be visible with a radio telescope?

Solution:

As described above, the �ux density is de�ned as:

Bν =
L

4πD2∆ν
,

with Bν the �ux density, P the luminosity (or emitted power), D the distance and ∆ν the bandwidth
of the emission.

Using the distance between the Earth and the Moon, this becomes:

Bν =
103 W

4π (3.84 × 108 m)
2

108 Hz
= 5.4 × 10−24 W/m2/Hz = 540 Jy.

Given that this object is hundreds to thousands of times brighter than typical radio sources, it would
easily be visible. In fact, it would outshine nearly everything else in the Universe!
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