
Introduction to Astronomy
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6 December 2019

1. The Crab pulsar (PSR B0531+21) has a spectral index of −3 over the frequency range from 10MHz to
10GHz (i.e. S ∝ ν−3). If the measured �ux at 400MHz is 650mJy and the spin-down luminosity dE/dt is
given by

dE/dt = 4π2IP−3dP/dt

with moment of inertia I = 1045 g cm2, spin period P = 33ms and spindown dP/dt = 4.23 × 10−13s/s,
calculate what fraction of energy loss the radio emission (between 10MHz and 10GHz) accounts for. The
Crab pulsar is at a distance of approximately 2 kpc. (Hint: calculate the energy loss derived from the spin-
down luminosity. Also calculate the total power emitted in the radio by integrating the �ux over frequency
and over a sphere, assuming isotropic emission. Then compare these two values.)

Solution: We are asked to compare the total �ux observed with that expected from spin-down. The
total energy loss from spin-down is:

Ė = 4π2IṖP−3 = 4π21038kg m24.23× 10−13
(
33× 10−3s

)−3
= 4.6× 1031 W.

This we now have to compare to the total energy emitted in radio. To do this, we �rst need to derive
the expression for the �ux as a function of frequency. We know that this relation is a power-law with
index -3 and that at 400MHz, we have a �ux of 650mJy. Therefore:

S(ν) = 0.650 Jy

(
ν

4× 108 Hz

)−3

So this allows us to calculate the total energy emitted in the radio band:

L = 4πD2

∫ 10 GHz

10 MHz

S(ν)dν.

With a distance of D = 2 kpc= 6.17× 1019 m, we get:

L =
4π
(
6.17× 1019m

)2
0.650Jy

(4× 108Hz)
−3

∫ 10GHz

10MHz

ν−3dν = 1.99× 1066m2JyHz3

[
−ν−2

2

]10GHz

10MHz

with 1Jy = 10−26W/m2/Hz, we get:

L = 1.99× 1040WHz2

(
10−14Hz−2

2
− 10−20Hz−2

2

)
= 1.0× 1026W.

So the radio emission accounts for 1026/
(
4.6× 1031

)
= 2 × 10−4% of the total energy loss. This

is a negligible amount, but that can be explained by the energy of the photons, which scales with
their frequency. Given that pulsars also emit gamma rays (which have frequencies thirteen orders
of magnitudes higher than radio waves), suggests most of the energy loss is carried by gamma ray
photons. However, the number of photons emitted in radio is much higher, which is why pulsars tend
to be detected in radio far more easily than in gamma rays (also because gamma rays cannot be observed
from Earth).
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2. A Cepheid variable has a period of 20 days and a mean apparent magnitude of 20mag. What is its distance?

Solution: Given the periodicity and the period-magnitude relation for Cepheid variables, we can cal-
culate the absolute magnitude:

〈M〉 = −2.78 log
P

10 days
− 4.13 = −2.78 log 2− 4.13 = −5.0.

Given the absolute magnitude and the apparent magnitude, we can now calculate the distance by
re-writing the de�nition of the absolute magnitude:

m−M = 5 log
D

10 pc

hence:
D = 10 pc

(
10m−M

)0.2
= 10 pc

(
1020+5

)0.2
= 106 pc.

So the star is 1Mpc away.

3. Cassiopeia A is a supernova remnant (SNR) with an angular diameter of 5.5 ′ at a distance of 3 kpc.

(a) If the observed expansion velocity is 6.8×106 m/s, calculate the expected age of the remnant, assuming
a constant expansion velocity.

Solution: The radial expansion of the nebular is:

5.5 arcmin

2× 60× 180
π × 3 kpc = 2.4 pc = 7.4× 1016 m.

At an average velocity of 6.8× 106 m/s, this would take:

T =
7.4× 1016 m

6.8× 106 m/s
= 1.09× 1010 s = 345 yr.

So the supernova probably occured sometime around 1669. (Note: since the star is surrounded by
a dense cloud of gas and dust, the actual supernova was not observed at the time.)

(b) If we have a resolution of 50mas1, how long would we need to observe in order to detect the expansion
of the nebula?

Solution:

50mas at 3 kpc distance corresponds to a linear size of

50× π
3600× 1000× 180

× 3× 103 pc = 7.3× 10−4 pc = 2.2× 1013 m.

If the remnant is expanding at 6.8× 106 m/s, then an expansion on this scale would take:

2.2× 1013 m

2× 6.8× 106 m/s
= 1.6× 106 s = 19 days.

So the expansion of the SNR should be visible on the time scale of a month!

4. A variable star changes its magnitude by 2 mag. If its e�ective temperature is 6000K at the maximum and
5000K at the minimum, how much does its radius change?

1mas = milli-arcsecond
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Solution:

The magnitude is related to the �ux and the �ux is related to the fourth power of the temperature
(Stefan-Boltzmann's law integrated over the stellar surface). Hence:

∆m = −2.5 logF1/Fref + 2.5 logF2/Fref = −2.5 log
4πR2

1σT
4
1

4πR2
2σT

4
2

= −2.5 log
R2

1T
4
1

R2
2T

4
2

Therefore we get the:

10−∆m/2.5 =
R2

1T
4
1

R2
2T

4
2

or:
T 4

2

T 4
1

10−∆m/2.5 =
R2

1

R2
2

.

Hence:
R1

R2
=
T 2

2

T 2
1

10−∆m/5 =
60002

50002
10−0.4 = 0.57.

So the stellar radius decreases by 43%.

Note the di�erence in the application of Stefan-Boltzmann's law this week and last week. The reason
we need the distance in our present calculation and did not need the radius of the star in last week's
calculation, is due to an easy point of confusion related to the �ux densities in consideration. Speci�cally,
when we discuss the Stefan-Boltzmann law generally:

Fblackbody = σT 4,

we consider the �ux density leaving the body. That means that the total emitted power must be
integrated over the size of the object:

Ptotal = 4πR2σT 4,

where R is the radius of the star.

However, in this week's exercise, we discuss the apparent magnitude:

m = −2.5 log
Fobs

Fref
,

where Fobs is the �ux density received by us on Earth. Consequently, in terms of the total power
emitted by the source, we have:

Fobs =
Ptotal

4πD2
,

with D the distance to the source.

Putting these things together, we get:

Fobs =
4πR2σT 4

4πD2
=
R2

D2
σT 4.

Consequently, when referring the apparent magnitude to the temperature of the star, we strictly speak-
ing need to consider both the radius and the distance of the star in question. In last week's exercise
both the distance and the radius of the two stars we compared were identical, so this all cancelled out.
In the exercise this week, the radius does change and hence needs to be taken into account.
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