
Introduction to Astronomy

Exercises week 7

22 November 2019

1. An interstellar gas cloud (which we approximate as a homogeneous sphere) has a mass of 1M� and density
of 1010 atoms per cm3. Its rotation period is 1000 years.

(a) What is the rotation period after the cloud has condensed (in its entirety) into a star of solar size?

Solution:

Assuming conservation of angular momentum, and knowing that angular momentum is given by
L = Iω where I is the moment of inertia and ω is the angular veolicty, we can compare the gas
cloud and the Sun as follows:

L = I�ω� = Igasωgas.

Now we use the equation for the moment of inertia (equation 1), assuming that both the Sun and
the cloud are homogenous spheres; we furthermore convert angular velocity into rotational period
(ω = 2π/P ) and, knowing that the cloud and the Sun have equal mass, we get:

R2
�

P�
=
R2

gas

Pgas
.

The rotational period of the cloud is given (1000 years) and the radius of the Sun is given in the
appendix (formula sheet). So all we now need, is the radius of the cloud. Knowing that the cloud
is spherical and weighs one Solar mass, we can get the radius of the cloud from its volume and
density:

M =
4

3
πR3ρ =M�

therefore:

Rgas =

(
3M�

4πρ

)1/3

=

(
5.97× 1033 g

4π1.67× 10−24 g × 1010106 m−3

)1/3

= 3.05× 1013 m.

Therefore, the rotation period after collapse, becomes:

P� = Pgas
R2

�
R2

gas

= 1000 yr

(
6.96× 108

3.05× 1013

)2

= 5.2× 10−7 yr = 0.045 hr = 16 s.

(b) In class we saw that the Sun's actual rotation is of the order of a month. The mismatch with the
value from the previous question can be explained in two ways: either the assumed rotation period of
the cloud is grossly incorrect, or the conservation of angular momentum during the collapse, does not
work perfectly. Given that typical values for gas motions in the interstellar medium are tens of km/s �
and noting that these are random velocities, i.e. that the variance of the velocity is of the same order,
explain if the rotation of the gas cloud could be grossly overestimated; and whether this could explain
the mismatch. (Hint: calculate the typical velocity such a rotation corresponds to and check if that is
comparable to (i.e. of the same order as) the typical gas motions in the interstellar medium.)
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Solution:

The rotation period P of 1000 yrs for a cloud with a radius of R = 3 × 1013m corresponds to a
velocity of 2πR/P = 2π3 × 1013/ (1000× 365.25× 24× 3600) km/s = 5.97 km/s. This is for the
edge of the cloud, which is dominant in terms of angular momentum.This is somewhat smaller
than the typical gas velocities of tens of km/s and so could be realistic.

Furthermore, the mismatch between the answer from the previous question and the actual rota-
tional period of the Sun (∼ 1month ≈ 30 × 24 hr = 720 hr), is �ve orders of magnitude. Given
that this rotational period scales linearly with the rotational period of the cloud, in order for
conservation of angular momentum to work perfectly, the rotational period of the cloud would
have to be of the order of 1000 × 105 yrs, i.e. about hundred million years, corresponding to gas
velocities of ∼ 6× 10−5 km/s, i.e. six orders of magnitude smaller than the typical gas velocities.
While the random motion does average out to some degree, it seems uncanny for it to cancel out
so extremely well.

We conclude that the suggested rotational period of the cloud is realistic, perhaps a bit short, but
can de�nitely not be the only explanation for the mismatch. Clearly the collapse of the proto-
stellar cloud does not conserve angular momentum perfectly, as a lot of angular momentum must
have been lost somehow. (Perhaps through magnetic breaking?)

Note: the �nal paragraph of this question is somewhat speculative and therefore not fully required.
The crux of the question is to perform a sanity check on the hypothetical cloud in question 1a.
Whether random motions of order tens of km/s give rise to an angular momentum comparable to
that of the cloud, or to that of the Sun, is a statistical answer that requires some experience or a
numerical simulation. The rest of the answer is needed, though, because it indicates what to look
at when trying to �gure out what explains the observed mismatch.

2. The nuclear time scale for a particular star, scales (only) with M/L; and the thermal time scale is propor-
tional to M2/(RL) (only), where M is the mass of the star, L is its luminosity and R is its radius.

(a) Given that for the Sun the nuclear time scale is 10 billion years (1010 yrs) and its thermal time scale
is 20 million years, derive exact equations for both quantities. (Hint: choose your units carefully.)

Solution:

Expressing the proportionalities in Solar units, allows us to de�ne the proportionality constant as
the relevant time for the Sun:

tnucl = 1010
MM�

LL�

yr

and

ttherm = 2× 107
M2

M�

RR�LL�

yr.

Alternative ways to write this, are:

tnucl
1 yr

= 1010
M

1M�

(
L

L�

)−1

.

and
ttherm
1 yr

= 2× 107
(

M

1M�

)2 (
R

1R�

L

1L�

)−1

Note: You could also use SI units and derive the proportionality constant. This is equally correct,
but less practical since stellar parameters are typically (as in the following exercise) expressed in
Solar units anyway.

(b) Given for Vega its mass of 2M�, radius of 3R� and luminosity of 60L�, calculate its nuclear and
thermal timescales. If you know that Vega is a star of spectral class A0V, what do you expect for those
timescales?
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Solution:

The numeric answers follow straight from the solutions of the previous exercise:

tnucl = 1010
2

60
yr = 3.33× 108 yr

and

ttherm = 2× 107
22

3× 60
yr = 4.4× 105 yr.

Because Vega is a brighter, hotter, star (class A0), we expect it to burn its fuel more rapidly and
so we expect its timescales to be shorter. The fact that it is in luminosity class V (dwarf stars)
doesn't really tell us much about its lifetime, it mostly just indicates that it is still on the main
sequence, which means it must be younger than 3 million years and therefore younger than (or at
most of roughly the same age as) our Sun.
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