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1. Flux density can be de�ned in two di�erent ways: either it can be considered to be the power per unit
collecting area and unit bandwidth, or as the power per unit collecting area and unit wavelength. Both
de�nitions are common, depending on which area of astronomy you consider, so it is important to know
how to convert from one de�nition to the other.

If the blackbody spectrum in terms of bandwidth is given as

Bν(T ) =
2hν3

c2
1

exp (hν/kT )− 1

then derive the blackbody spectrum in terms of wavelength. (Hint: consider |Bν(T )dν| = |Bλ(T )dλ|.)

Solution:

Because |Bν(T )dν| = |Bλ(T )dλ|, we have:

Bλ(T ) = Bν(T )

∣∣∣∣dνdλ
∣∣∣∣ .

We also know the relation between ν and λ: ν = c/λ, so dν/dλ = −c/λ2. Hence:

Bλ(T ) = cBν(T )/λ
2 = c

2hν3

c2λ2
1

exp (hν/kT )− 1
=

2hc2

λ5
1

exp (hc/kλT )− 1
.

2. Last week, we saw how faint most stars are in the radio part of the spectrum (i.e. in the frequency range
ν . 1011Hz).

(a) Given that the peak of the blackbody spectrum for stars typically falls in the optical range (ν ≈
1015Hz), derive the Wien approximation to the Planck spectrum given in the previous exercise. (Hint:
Wien's approximation simpli�es Planck's blackbody spectrum by moving the exponential to the nu-
merator [i.e. get rid of the division so that the exponential ends up being merely a multiplicative
factor].)

Solution:

The Planck blackbody spectrum was given in exercise 1:

Bν(T ) =
2hν3

c2
1

exp (hν/kT )− 1
.

The exponent of the exponential is: hν/kT with h = 6.626 × 10−34 Js Planck's constant and
k = 1.380658 × 10−23 J/K Boltzmann's constant. Therefore: hν/kT = 4.8 × 10−11ν/T . So for
ν � 1011, we have: hν/kT � 1 (since the temperature is at most a few thousand degrees) and
therefore: ehν/kT � 1. We can then make the approximation:

exp (hν/kT )− 1 ≈ exp (hν/kT ) .
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With this approximation, the blackbody law becomes:

Bν(T ) =
2hν3

c2
exp (−hν/kT ) .

This is Wien's approximation.

(b) Now use the result from the previous question (Bν(T ) = 2hν3/c2 exp (−hν/kT )) to derive the Wien
displacement law in terms of frequency (Note: last week we also looked at Wien's displacement law,
but in terms of wavelength. After exercise 1, we can realise this is slightly di�erent.)

Solution: In order to derive Wien's displacement law in terms of frequency, we now take the
derivative of this formula and require it to be zero:

∂Bν(T )

∂ν
=

6hν2

c2
exp (−hν/kT )− h

kT

2hν3

c2
exp (−hν/kT ) = 0.

Simplifying gives:

νmax =
3k

h
T = 6.25109× 1010T.

(Note: a full derivation without using the approximation of Wien, results in νmax = 2.82kT/h, so
the approximation is correct to within ∼ 6%.)

(c) Finally calculate the frequency at which the Solar radiation peaks (remember the Solar temperature
we calculated last week, was T = 5778K).

Solution:

Using the formula from the previous question (with T = 5778K) to achieve the frequency at which
the Solar spectrum reaches a maximum, we get:

νmax = 3.6× 1014 Hz = 360THz,

which translates to a wavelength of 831 nm.

The fact that this peak value is quite di�erent from the one calculated last week (in terms of
wavelength) should not be surprising, because frequency and wavelength are not linearly related.
This means that the distribution gets transformed nonlinearly, which allows the peak of the distri-
bution to shift signi�cantly. This is an important (though often overlooked) aspect of non-linear
parameter transformations and is more widely relevant, for example in the conversion of parallax
to distance.

3. Earlier, we discussed how Kepler's law can be used to derive the masses of planets, assuming the mass
of their moons are negligible in comparison. In the case of binary stars, this assumption is typically not
correct. However, since both stars in such a system move symmetrically (weighted by their repective masses)
around the common centre of gravity, it is easily realised that their mass ratio equals the inverse ratio of
their orbital sizes: m1/m2 = a2/a1. Combining this equation with Kepler's third law (P 2Mtot = a3, in
which a is the sum of the semi-major axes of the two companion stars), we can disentangle the masses from
both stars.

Illustrate the above by calculating the masses for a binary pair of stars that orbit every 100 years and are
at most 7′′ and at least 1′′ separated on the sky. Assume a distance (to Earth) of 10 pc; the heaviest star
moves by 2′′ during its orbit.

Solution:

If the maximum separation is 7′′, the minimum separation is 1′′ and the smallest orbit is 2′′ across,
then the larger orbit must be 6′′ across. So the semi-major axis is:

a = 6/2 + 2/2 = 4′′.
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Knowing that by de�nition a length of 1AU at a distance of 1 parsec corresponds to an angular lenght
of 1 arcsec, then this 4 arcsec angular length at a distance of 10 pc has to correspond to 40AU.

Putting this into Kepler's equation gives:

m1 +m2 =
403

1002
M� = 6.4M�.

Now given that m1/m2 = a2/a1 = 3 thus m1 = 3m2. Hence: 4m2 = 6.4M� thus:

m2 = 1.6M�

and m1 = 4.8M�.
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