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1. The Solar �ux at the Earth (remember 1AU = 1.495978× 1011m), is 1370W/m2. By integrating Planck's
law (i.e. the blackbody spectrum), we can achieve Stefan-Boltzmann's law, which states that the frequency-
integrated power output per unit surface area of a blackbody scales with temperature as: M = σT 4, where
σ = 5.6705 × 10−8Wm−2K−4 is the Stefan-Boltzmann constant and M is the total energy �ux per unit
surface area and unit time.

(a) Calculate the total power output of the Sun and the Sun's temperature, assuming it is a blackbody.
(Note the Solar radius is about 696,342 km.)

Solution:

The total power output is simply derived, if we assume that the output is fully isotropic:

F = 1370W/m
2 × 4π (1AU)

2
= 1370× 4π ×

(
1.495978× 1011

)2
W = 3.85× 1026 W.

Therefore the energy �ux per unit surface area, is:

M = F/A = F/
(
4π × 6963420002

)
= 6.32× 107 W/m

2
.

We can now use Stefan-Boltzmann's law to determine the temperature:

T = (M/σ)
1/4

= 5778K.

(b) By di�erentiating Planck's law, we can �nd the frequency at which the luminosity of a blackbody peaks.
This is called Wien's law and states: λpeak = hc/ (βkT ) with β = 4.96511, k = 1.380658× 10−23 J/K
Boltzmann's constant and h = 6.626× 10−34 Js Planck's constant. Now calculate the peak wavelength
and frequency for the Solar spectrum.

Solution:

With a temperature of 5778K, we have the peak brightness at:

λpeak =
6.626× 10−34 × 3× 108

4.96511× 1.380658× 10−23 × 5778
m = 502× 10−9 m

or 502 nm. This equates to ν = c/λ = 598THz.

(c) Using the numbers above, estimate the amount of mass-loss this power output equates with, per second.
At this rate, how long does the Sun survive? (The Sun's weight is approximately 2× 1030 kg.)

Solution:

Using E = mc2 and the total power ouput from question a), we get:

mpersec = Epersec/c
2 =

3.85× 1026 W

(3× 108 m/s)
2 = 4.28× 109 kg/s.

At this rate, the Sun would survive for 2× 1030/4.28× 109 s = 4.67× 1020 s or about 14807 billion
years. In practice, this amount of mass loss is roughly equal to that of the Solar wind and neither
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have any impact on the evolution of the Sun, because over the Sun's lifetime (of the order of ten
billion years), it doesn't amount to a signi�cant fraction of the Solar mass.

2. The sensitivity of radio telescopes is often expressed in terms of the Jansky (Jy), where 1 Jy= 10−26W/m2/Hz.
Assuming a sensitivity of 1mJy for a system that has a bandwidth of 300MHz centred at 1.4GHz, how
far can you place the Sun before it becomes undetectable? Use the Rayleigh-Jeans approximation to the
Planck spectrum, for long wavelengths: Iν = 2kTν2/c2. Given that 1AU = 4.85µpc and with a Galactic
radius of ∼ 15 kpc, in what fraction of the Galaxy can we see Sun-like stars in the radio?

Solution:

We found the temperature of the Sun to be 5778K, therefore, the intensity of the Sun at 1.4GHz is:

I = 2× 1.38× 10−23 J/K× 5778K×
(
1.4× 109 Hz

3× 108 m/s

)2

= 3.5× 10−18 W/m
2
/Hz = 3.5× 108 Jy.

Now, this intensity scales with the inverse of distance squared (and it is given at the Solar surface), so:
Ilim ×D2

lim = I ×R2
�. Hence, the distance for a limiting �ux of 1mJy is:

Dlim/R� =
√
I/Ilim =

√
3.5× 108/10−3 = 5.9× 105.

So we can see Sun-like stars in the radio out to 0.59 million solar radii. Since R� = 696342× 103 km,
1AU= 1.495978× 1011m and 1AU= 4.85µpc, we have: R� = 2.258× 10−8 pc, or: Dlim = 5.9× 105 ×
2.258× 10−8 = 0.013 pc.

In terms of fraction of the Galaxy, this is 0.0132/150002 = 7.9× 10−13 or 7.9× 10−11% of the Galactic
disk.

In practice, the nearest star is proxima centauri, at a distance of 1.3 pc, which puts it much too far
away to be observable with the system described here. This is the main reason why stellar astronomy
is never performed at radio wavelengths (except in the case of the Sun).
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