Introduction to Astronomy Exercises week 5

8 November 2019

- 1. The Solar flux at the Earth (remember $1 \text{ AU} = 1.495978 \times 10^{11} \text{ m}$), is 1370 W/m^2 . By integrating Planck's law (i.e. the blackbody spectrum), we can achieve Stefan-Boltzmann's law, which states that the frequency-integrated power output per unit surface area of a blackbody scales with temperature as: $M = \sigma T^4$, where $\sigma = 5.6705 \times 10^{-8} \text{ Wm}^{-2} \text{K}^{-4}$ is the Stefan-Boltzmann constant and M is the total energy flux per unit surface area and unit time.
 - (a) Calculate the total power output of the Sun and the Sun's temperature, assuming it is a blackbody. (Note the Solar radius is about 696,342 km.)
 - (b) By differentiating Planck's law, we can find the frequency at which the luminosity of a blackbody peaks. This is called Wien's law and states: $\lambda_{\text{peak}} = hc/(\beta kT)$ with $\beta = 4.96511$, $k = 1.380658 \times 10^{-23} \text{ J/K}$ Boltzmann's constant and $h = 6.626 \times 10^{-34} \text{ Js}$ Planck's constant. Now calculate the peak wavelength and frequency for the Solar spectrum.
 - (c) Using the numbers above, estimate the amount of mass-loss this power output equates with, per second. At this rate, how long does the Sun survive? (The Sun's weight is approximately 2×10^{30} kg.)
- 2. The sensitivity of radio telescopes is often expressed in terms of the Jansky (Jy), where $1 \text{ Jy} = 10^{-26} \text{ W/m}^2/\text{Hz}$. Assuming a sensitivity of 1 mJy for a system that has a bandwidth of 300 MHz centred at 1.4 GHz, how far can you place the Sun before it becomes undetectable? Use the Rayleigh-Jeans approximation to the Planck spectrum, for long wavelengths: $I_{\nu} = 2kT\nu^2/c^2$. Given that $1 \text{ AU} = 4.85 \,\mu\text{pc}$ and with a Galactic radius of ~ 15 kpc, in what fraction of the Galaxy can we see Sun-like stars in the radio?