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1. The resolution of telescopes can be approximated as:

θ ≈ 1.22
λ

D

where θ is the resolution in radians, λ is the observing wavelength in metres and D is the aperture diameter
in metres.

(a) Considering the 10-m Keck telescopes operating at a wavelength of 580 nm (in the yellow part of the
spectrum), calculate the minimum angular diameter (in radians and arcseconds) a source will have to
be in order to be resolved.

Solution:

The minimum angular diameter in radians is easy:

θ ≈ 1.22
580× 10−9

10
= 7.076× 10−8 radians.

Recalculating into arcseconds, we get:

θ ≈ 7.076× 10−8 rad× 180

π
∗ 3600 = 15mas

So the resolution is just better than 15mas, which means that objects will have to be larger than
15mas in order to be resolved.

In practice this high resolution does not get achieved, though, since various corrupting e�ects play
a role. Most importantly seeing, where instabilities (turbulence) in the Earth's atmosphere cause
the object to �wander around�, thereby smearing the image. A more realistic estimate of resolution
that is practically achievable on Earth, is about an order of magnitude higher.

(b) With interferometric techniques, multiple telescopes can be used in combination to synthesise a large
one. In that case the aperture diameter in the above equation becomes equal to the maximal spacing
between telescopes.

Calculate the resolution of the very large array � a 27-element interferometer in New Mexico � operating
at an observing frequency of 50GHz and in its most extended con�guration, with a maximal baseline
length of 36 km.

Solution:

First, we calculate the observing wavelength:

λ = c/ν =
3× 108m/s

50× 109Hz
= 0.006m.

Now the resolution follows trivially:

θ ≈ 1.22
0.006

36× 103
= 2× 10−7 radians = 42mas.

Because radio waves have much longer frequencies, they are less a�ected by atmospheric turbulence,
meaning that this angular resolution is actually realistically achievable.
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2. (a) The orbital period of Mars around the Sun is 1.8808 years. Using Kepler's third law (a3AU = (M1,M� +
M2,M�)P

2
yrs), calculate the semi-major axis of the Martian orbit.

Solution:

The semi-major axis follows straightforwardly, assuming MMars �MSun:

aAU =
(
1× 1.88082

)1/3
= 1.52AU.

(b) Using the result from the previous question and the fact that the astronomical unit equals 1.496 ×
108 km, estimate the radius of Mars if its angular radius is observed to be 9.2′′ at opposition (when
the Earth is directly between Mars and the Sun). Approximate orbits as perfectly circular.

Solution: When the Earth is directly between Mars and the Sun; and approximating the Earth's
orbit as a circle, we have a distance between the Earth and Mars of 0.52AU. From trigonometry,
it follows that the angular radius α is related to the radius r of and the distance D to the object
as: α = asin(r/D), or, more simply, as: α = r/D. Hence, we get:

r = αd = 9.2′′0.52AU = 9.2/3600/180× π × 0.52× 1.496× 1011 m = 3.470× 106 m.

So the radius of Mars must be about 3470 km.

(c) Now that you know how far Mars is, you can calculate its mass by observing the orbit of its moon.
Speci�cally, Phobos orbits Mars in 0.3189 days and when Mars is in opposition, the maximum separa-
tion between Phobos and Mars is seen to be 25′′. What is Mars' mass (compared to Earth)? (Assume
a circular orbit for Phobos; and use a solar mass of M� = 332968×MEarth.)

Solution: The distance between Mars and Phobos follows from geometry:

r = α× d = 25′′ × 0.52AU = 25/3600/180× π × 0.52AU = 6.30× 10−5 AU = 9429 km.

Now, assuming MMars �MPhobos, we can use Kepler's third law again:

MMars =
a3

P 2
=

(6.30× 10−5)3

(0.3189/365.25)2
M� = 3.28× 10−7M� = 0.109MEarth.

3. There are two obvious de�nitions of a day: the sidereal day, after which the Earth has regained its orientation
with respect to the stars; and the Solar day, after which the Earth has regained its orientation with respect
to the Sun. Calculate the di�erence between the two; and how much does this di�erence add up to in a
year? (Note that there are 86400 seconds in a Solar day and 365.25 days in a year, by de�nition.)

Solution: The Solar day lasts 24 hours. Since it takes Earth 365.25 days to revolve around the Sun,
in those 24 hours, the Earth has travelled 2π/365.25 radians in its orbit around the Sun. This means
that during a Solar day, the Earth has rotated 2π(1+ 1/365.25) radians around its axis, instead of just
2π. In other words:

TStellar
TSolar

=
2π

2π(1 + 1/365.25)
.

Now, with TSolar = 86400 sec, we get:

TStellar =
1

1 + 1/365.25
86400 sec = 86164 sec.

This is 236 seconds or 3m : 56s less than a Solar day. So the Earth actually rotates around its axis once
every 23h56m4s, instead of every 24 hours.

Over the course of a year, this mismatch results in 365.25 ∗ 236 s= 86199 sec or nearly a day. So there
is essentially one less solar day in the year than there are sidereal days.
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An alternative � and possibly easier and shorter, but equally correct � solution would be to point out
that over the course of a year, there must be exactly one more sidereal day than solar day (to make up
for the single rotation the Earth has made around the Sun). This means that the fractional di�erence
in length would be:

TStellar
TSolar

=
366.25

365.25
= 1.00274,

from which it follows that a sidereal day must be 86400/1.00274 seconds long.
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