SMBH-Bulge-Relations

Jonas Heinze

Galactic Astronomy SS 2018

Jonas Heinze (University of Bielefeld)

SMBH-Bulge-Relations

글 🕨 🖌 글

2018 1/21

Übersicht

Introduction

- Super Massive Black Holes
- Why study SMBH-Bulge relations?
- SMBH-Bulge relations

Ferrarese, Merritt (2000)

- Data
- Findings

3 Beifiori, Courteau, Corsini, Zhu (2011)

- Data
- Findings
- 4 Lou, Jiang (2008)
- 5 Conclusion

- Super Massive Black Hole (SMBH) at the center of most galaxies
- SMBH resides in the bulge of its host galaxy
- SMBH mass $M_{\bullet} \sim 10^6 10^{10} M_{\odot}$

- Not much known about Galaxy formation or evolution
- Not much known about SMBH formation or evolution either
- Correlation between SMBH and Galaxy (bulge) properties might further understanding
- (direct) gravitational influence of SMBH much smaller than bulge radius
 - relations must be caused by coevolution or -formation

- SMBH properties:
 - SMBH Mass M.
- Galactic bulge properties
 - (central) stellar velocity dispersion σ
 - bulge luminosity
 - bulge mass
 - etc.

< 47 ▶

- A B M A B M

- studied:
 - $M_{\bullet} \sigma$ relation (first)
 - $M_{\bullet} B_T^0$ relation

< 17 ▶

< 3 > < 3</p>

used two samples:

- 12 galaxies with "reliable" SMBH mass of kinematic measurements (Sample A)
- 29 galaxies with less secure SMBH mass of fitting accretion disk models (Sample B)
- used mass errors of original papers
- suggest that some errors might be much larger
- used central velocity dispersion

Ferrarese, Merritt (2000) Findings

Figure: top row: Sample A, bottom row: Sample B

- poor fit for B_T^0
- tight relation for σ (in Sample A)

$$\log M_{\bullet} = 4.80(\pm 0.54) \log \sigma_c - 2.9(\pm 1.3)$$
(1)

- Sample B relation much less tight
 - SMBH masses of addition data lie systemetically above Sample A

∃ >

studied:

- $M_{\bullet} \sigma$ relation
- *M*_● − *L*_{bulge} relation
- *M*_● − *M*_{bulge} relation
- *M*_• *n* relation (Sérsic shape index)
- $M_{\bullet} \langle \mu_{e,bulge} \rangle$ relation (mean effective surface brightness)
- $M_{\bullet} L_{gal}$ relation
- $M_{\bullet} M_{gal}$ relation
- also tested if there is a *Fundamental Plane* by fitting two parameters

Beifiori, Courteau, Corsini, Zhu (2011)

used two samples:

- 105 galaxies with SMBH mass obtained from *Hubble Space Telescope* archival spectra (Beifiori et al. 2009)
- 49 galaxies with SMBH mass based on kinematics (Gültekin et al. 2009
- 18 galaxies with SMBH mass from both measurements
- used 18 galaxies to compare both measurements
 - within 1σ to each other
 - use both for fits
- not all other properties are known for all galaxies

Beifiori, Courteau, Corsini, Zhu (2011) Findings

Figure: top row: morphological type, bottom row: nuclear activity

Jonas Heinze (University of Bielefeld)

SMBH-Bulge-Relations

2018 12/21

relations given in the form

$$\log \frac{M_{\bullet}}{M_{\odot}} = \alpha + \beta \log \frac{x}{x_0}$$
(2)

Ν β Х α ϵ X_0 0.44 ± 0.07 200*km/s* 143 7.99 ± 0.06 4.42 ± 0.30 σ $10^{11}L_{\odot}$ 57 8.17 ± 0.22 0.79 ± 0.24 0.81 ± 0.13 L_{bulge} $10^{11} M_{\odot}$ M_{bulae} 57 7.84 ± 0.12 0.91 ± 0.16 0.61 ± 0.08

ъ

Beifiori, Courteau, Corsini, Zhu (2011)

Findings $M_{\bullet} - \sigma$ relation

- $M_{\bullet} \sigma$ relation
 - results consistent with previous measurements
 - upper limit changes zero-point
 - scatter slightly larger than expected
 - scatter larger for late-types, more late-types in data set
 - no significant difference between barred and unbarred galaxies
 - bulges and pseudo-bulges differ in slopes

Beifiori, Courteau, Corsini, Zhu (2011) Findings

- $M_{\bullet} L_{bulge}$ relation
 - results consistent with previous measurements
 - scatter larger than $M_{\bullet} \sigma$
 - strongly barred galaxies were excluded from sample
- $M_{\bullet} M_{bulge}$ relation
 - · results consistent with previous measurements
 - additional parameter: radius
 - scatter slightly larger than $M_{\bullet} \sigma$

Beifiori, Courteau, Corsini, Zhu (2011) Findings

- inclusion of third parameter
 - tightest relation $M_{\bullet} \sigma r_{e,bulge}$
 - even that only slight improvement
- $M_{\bullet} \sigma$ relation still fundamental

- model galactic bulge as a
 - spherical
 - polytropic ($pV^n = C$)
 - fluid
- stellar velocity dispersion produces effective pressure
- pulled together by self-gravity

solved by self-similar static ansatz

- observables invariant at x/t^n
- needs an additional scaling index K
- at very large timescales
- model dependent on two parameters n and K
- black hole mass defined by Schwartzschild-radius of enclosed mass

- for positive mass 2/3 < n < 1
- resulting relation:

$$M_{\bullet} = L \cdot \sigma^{1/(1-n)} \tag{3}$$

- L is dependent on n and constants
- model also reproduces M_● M_{bulge} relation
- can not model pseudo-bulges, no spherical symmetry

- SMBH-galaxy relations might help understanding co-evolution
- tight $M_{\bullet} \sigma$
 - even tighter depending on galaxy type
- other relations less tight
- only very slightly (if any) Fundamental Plane

< 3 > < 3</p>

- L. Ferrarese, D. Merritt; A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies, The Astrophysical Journal Letters, Volume 539, Number 1, 3 August 2000, Pages L9
- A. Beifiori, S. Courteau, E. M. Corsini, Y. Zhu; On the correlations between galaxy properties and supermassive black hole mass, Monthly Notices of the Royal Astronomical Society, Volume 419, Issue 3, 21 January 2012, Pages 2497-2528
- Yu-Qing Lou, Yan-Fei Jiang; Supermassive black holes in galactic bulges, Monthly Notices of the Royal Astronomical Society: Letters, Volume 391, Issue 1, 1 November 2008, Pages L44-L48