Pulsar Masses

The Remnant Mass distribution in Neutron Stars

Stefan Grohnert

Universität Bielefeld

July 6, 2018

1/25

KOX KOX KEX KEX E YORN

Table Of Contents

1 [Introduction](#page-2-0)

- **[Pulsars and Neutron Stars](#page-2-0)**
- **[Mass Measurements](#page-5-0)**
- **[NS Binary Systems](#page-8-0)**
- [Theoretical Masses](#page-9-0)
- 2 [Results](#page-10-0)
	- **NS** Systems
	- **[Important Values](#page-14-0)**
- 3 [Conclusions](#page-17-0)

Figure: NASA, ESA, G. Dubner et al, 2017 メロト メタト メミト メミトー

2/25

Þ

 QQ

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

- **1932 Chadwick Possible existence of a neutron**
- shortly after Landau anticipates neutron composed dense-compact stars
- 1934 Baade & Zwickey introduce term "neutron star", mention evolutionary paths, mass and radii constraints

Why are these constraints important?

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B} \otimes \mathcal{B}$

3/25

 QQ

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

Mass one of the most important parameters

- Birth mass Stellar evolution, core collapse, super novae
- **Naximum mass outlines black hole low-mass limit**
- **Equation of State test nuclear physics of superdense matter**
- Gravitation test Einstein's general relativity in strong gravity regime

Over the years many mass constraints have been proposed

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

4/25

÷.

 QQ

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

Pulsars

General information and values

Mass investigated $M_{ZAMS} \approx 8 - 60 M_{\odot}$ Radius $r_{NS} \approx 12 \text{km}$
Period $P \sim \text{few} \text{ s}$ Period $P \sim few s$ $\overline{P} \approx 10^{-15} s/s$ Millisecond pulsar $\vert P \sim$ few ms $\vert P \approx 10^{-20} s/s$ Lighthouse model \vert \vert \vert \vert complicates detection Magnetic field strength $H > 10^{10}T$ no alignment with spin Gravitational field $\left|g \approx 10^{11} g_{\text{earth}}\right|$ possibility of Lensing

 $\mathcal{A} \subseteq \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A} \oplus \mathcal{A} \rightarrow \mathcal{A}$

5/25

つくへ

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

Measurements

Spin period, period decay measurable for every NS Mass measurement only possible in a binary system

> This poses a major problem \sim 90% of all NS are isolated stars

2 methods are currently used in two different frequency regimes: Radio measurements with more precise model X-ray - optical combination model

Possibility with gravitational waves from mergers (LIGO & LISA)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

6/25

 2990

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

Radio and Post Keplerian Parameters

Normal Keplerian not suited due to effects of GR 2 parameters required to infer M_{psr} with high precision **1** Advancement of Periastron $\omega(P_h, T_0, e, M_{tot})$ **2** Orbital Period Decay $\dot{P}_b(P_b, T_{\odot}, e, M_{tot}, M_{psr}, M_{cmp})$ 3 time dilation-gravitational redshift $\gamma(P_b, T_a, e, M_{tot}, M_{psr}, M_{cm})$ 4 Shapiro delay range $r(T_0, M_{cm})$ **5** Shapiro delay shape $s(P_b, T_a, a, M_{tot}, M_{cm})$

Additional measured parameters provide consistency test method of strong field gravitational theories

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{A} \$

7/25

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

X-Ray - optical method

Works in actively accreting binary system with optical companion

Accretion makes X-ray observation possible Optical companion observed with optical spectroscopy

Orbital Period and v_{rad} can be determined from measuring:

- **cyclical doppler shift of pulse period**
- of doppler shift in spectral features of optical companion

Parameters provide systems mass function Inclination angle splits it into M_{psr} and M_{cmb}

Models typical mass errors of 10%

イロメ イ母メ イミメ イヨメー ヨー

8/25

 $2Q$

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

Binary Population

Figure: Lorimer (modified) - Binary evolutionary scenarios

9/25

KOX KOX KEX KEX E YORN

Stefan Grohnert [Pulsar Masses](#page-0-0)

[Pulsars and Neutron Stars](#page-2-0) [Mass Measurements](#page-5-0) [NS Binary Systems](#page-8-0) [Theoretical Masses](#page-9-0)

10→ 1日→ 1월→ 1월→ 1월 1990 10/25

Theoretical Mass Values

Birth mass infered from Chandrasekhar mass: $M_{ch} \approx 1.457 M_{\odot}$ Various corrections for not well understood evolutionary processes: $M_{birth} \sim 1.06 - 1.57 M_{\odot}$

MSP accretion mass

Typical accretion rates and angular momentum needed for spin up: $\Delta M_{\rm acc} \approx 0.1 - 0.2 M_{\odot}$

Expected mass order:

 $DNS <$ accreating $NS <$ recycled $NS <$ recycled MSP

Maximum mass dependent on EoS General relativity and causal limit: $M_{max} \sim 3.2 M_{\odot}$ Modern EoSs: $M_{\text{max}} \approx 1.5 - 2.2 M_{\odot}$

[NS Systems](#page-10-0) [Important Values](#page-14-0)

DNS

Zhang - simple gaussian approach $M_{\text{DNS}} = 1.32 \pm 0.14 M_{\odot}$ heavier $M_{\text{rcv}} = 1.38 \pm 0.12 M_{\odot}$ lighter $M_{\text{nrcv}} = 1.25 \pm 0.13 M_{\odot}$ Mass ratio - orbital period relation?

Ozel - likelihood modeled distribution $M_{DNS} = 1.33 \pm 0.05 M_{\odot}$ faster $M_{psr} = 1.35 \pm 0.05 M_{\odot}$ slower $M_{cmb} = 1.32 \pm 0.05 M_{\odot}$

Kiziltan - $M_{DNS} = 1.35 \pm 0.13 M_{\odot}$

Figure: DNS distribution

A D P A E A E F A E P A H F A L P

11/25

Ozel & Freire - $M_{DNS} = 1.33 \pm 0.09 M_{\odot}$

[NS Systems](#page-10-0) [Important Values](#page-14-0)

Accreting NS/Slow Pulsar

Believed to be sightly above the Birth/DNS mass but wider distributed due to different times of accretion

Investigated by Özel

First approach did not confirm this $M_{\rm aNS} = 1.28 \pm 0.24 M_{\odot}$ (2012)

Second approach described the hypothesis $M_{2\text{NS}} = 1.49 \pm 0.19 M_{\odot}$ (2016)

Figure: aNS distribution

メロメ メ御 メメ ミメ メヨメ 一番

12/25

 $2Q$

[NS Systems](#page-10-0) [Important Values](#page-14-0)

NS-WD (recycled NS)

 O zel - included MSP and low mass X-ray $NS - M_{rNS} = 1.48 \pm 0.20 M_{\odot}$

Radio method observations alone yielded - $M_{rNS} = 1.46 \pm 0.21 M_{\odot}$

Kiziltan - slightly heavier result $M_{rNS} = 1.50 \pm 0.25 M_{\odot}$

Ozel & Freire - update now even heavier - $M_{rNS} = 1.54 \pm 0.23 M_{\odot}$

10→ 1日→ 1월→ 1월→ 1월 1990 13/25 Figure: rNS distribution

[NS Systems](#page-10-0) [Important Values](#page-14-0)

MSP

Zhang - included every NS with spin period < 20 ms - $M_{MSP} = 1.57 \pm 0.35 M_{\odot}$ Significantly heavier than slow spinning pulsars $M_{MSP} = 1.37 \pm 0.23 M_{\odot}$ 4 MSP with masses less than Chandrasekhar mass limit $M_{ch} = 1.44 M_{\odot}$ - AIC?

Ozel & Freire - reference paper of Antoniadis et al.(2016) - Double peak population $M_{AIC2} = 1.388 \pm 0.058 M_{\odot}$ $M_{\text{rMSP}} = 1.814 \pm 0.152 M_{\odot}$

Figure: MSP distribution

(ロ) (御) (唐) (唐) (唐) 이익어 14/25

[NS Systems](#page-10-0) [Important Values](#page-14-0)

Accretion mass

Zhang - infered from accretion mass - spin period relation $M = M_{birth} + M_{caracc} (P/ms)^{-2/3}$ Characteristic accretion mass $M_{\text{caraacc}} = 0.43 \pm 0.23 M_{\odot}$ with very low confidence level Confirmed mass for MSP to be $\Delta M \approx 0.2 M_{\odot}$

Ozel - derive formula with spin frequency and moment of inertia $\Delta M = 0.034(\frac{\nu_s}{300 Hz})^{4/3}(\frac{M}{1.48R})$ $\frac{M}{1.48M_{\odot}}$)^{-2/3}($\frac{1}{10^{45}g}$ $\frac{1}{10^{45}gcm^2}$) M_{\odot} M not specified and no calculations done

(ロ) (御) (唐) (唐) (唐) 이익어 15/25

[NS Systems](#page-10-0) [Important Values](#page-14-0)

Birth mass

Zhang - infered from relation of accretion mass - spin period $M = M_{birth} + M_{caracc} (P/ms)^{-2/3}$ $M_{birth} = 1.40 \pm 0.07 M_{\odot}$

Kiziltan - more diverse sample with more rigorous testing needed

Ozel - never mentioned one value $M_{DNS} = 1.33 \pm 0.05 M_{\odot} (1.33 \pm 0.09 M_{\odot})$ $M_{\rm aNS} = 1.28 \pm 0.24 M_{\odot} (1.49 \pm 0.19 M_{\odot})$

Figure: Birth mass

A D P A E A E L A E L A E L A A L L

16/25

[NS Systems](#page-10-0) [Important Values](#page-14-0)

Maximum mass

Zhang et al.

- Accreting mass for MSP $\sim 0.2 M_{\odot}$
- **DNS** mass lower than slow NS mass ⇒ difference in mass formation or evolutionary history?
- DNS mass ratio orbital period
- AIC formation rate $<$ 20% (4/22)

Figure: Zhang distribution

 $\mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{A} \oplus \mathcal{B}$

18/25

 $2Q$

4 0 8

Ozel et al.

- \blacksquare Difference: DNS \Leftrightarrow other binarys
- **Narrow DNS difficult to account for** Wide distribution by SN fallback \Rightarrow evolutionary history to formation
- **n** rNS 0.2 M_{\odot} heavier than aNS/slow pulsars \Rightarrow enough for MSP
- Surprised that $M_{rNS} \ll 2M_{\odot}$ Refine low-mass X-ray binary models
- Some reach comparable $M_{max,NS}$ collapse into undetected low mass BH

 \equiv

 $2Q$

≮ロト (何) (日) (日)

19/25

Stefan Grohnert [Pulsar Masses](#page-0-0)

Kiziltan et al.

- **More diverse sample tested with more** rigorous statistics required
- Distribution shows no truncation for high mass NS
	- \Rightarrow evolutionary constraint driven limit
- \blacksquare 2 M_{\odot} minimum for maximum M_{NS} but: typical accretion rates during LMXB phase can't form them \Rightarrow non standard evolutionary channels or standard scenario needs revision

Figure: Kiziltan distribution

 \equiv

 $2Q$

≮ロト (何) (日) (日)

20/25

Ozel and Freire

- **Mass not main topic of paper**
- **Narrowness of DNS stands out but** new measurments suggest wider distribution
- Current highest precise mass $M = 2.01 \pm 0.04 M_{\odot}$ but: see possibility for heavier NS

Figure: Özel distribution

 \equiv

 $2Q$

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

21/25

Conclusions

- Kiziltan et al. right two few masses known (≈ 65 of ~ 250) Ozel and Freire - large increase in upcoming years
- Expected mass increase is shown DNS $<$ accreating NS \leq recycled NS
- Two MSP types recycled NS and AIC from WD
- \Box 0.2 M_{\odot} enough for MSP creation
- Current max mass known but no clear cut off found

Figure: Likely distribution

イロメ 不倒 メイミメ 不正 メーヨ

22/25

 $2Q$

Questions

- Birth mass still now well constrained -Possibility for different Birth masses for DNS and other binaries?
- DNS unusual narrow distribution evolutionary mechanism, orbital period relation or random statistics?
- \blacksquare How are the heavy NS created? High birth mass, even longer or higher accretion or other evolution?

Figure: Likely distribution

 \overline{z} (\overline{z}) \overline{z}) \overline{z}) \overline{z}) \overline{z}

23/25

 $2Q$

Binary and Millisecond Pulsars

Duncan R. Lorimer Living Reviews in Relativity, vol. 11, no. 8 (2008)

Study of measured pulsar masses and their possible conclusions

C.M. Zhang et al.

Astronomy & Astrophysics, Volume 527, id.A83, 8 pp. (2011)

On the Mass Distribution and Birth Masses of Neutron Stars Ferval Özel et al.

The Astrophysical Journal, Volume 757, Issue 1, article id. 55, 13 pp. (2012)

The Neutron Star Mass Distribution

Blent Kiziltan et al. The Astrophysical Journal, Volume 778, Issue 1, article id. 66, 12 pp. (2013)

Masses, Radii, and the Equation of State of Neutron Stars

Ferval Özel and Paulo Freire Annual Review of Astronomy and Astrophysics, vol. 54, p.401-440 (2016)

 $24/25$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \mathbf{B} + \mathbf{A}$

Thank you for your attention!

Stefan Grohnert [Pulsar Masses](#page-0-0)