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I. GENERAL FRAME

For the sake of convenience, we recall here once again
the general set-up from the main paper: We consider a
Hamiltonian with eigenvalues En and eigenvectors |n〉 on
a D-dimensional Hilbert space H,

H =

D
∑

n=1

En|n〉〈n| , (1)

and it is assumed that the differences Em −En are finite
and mutually different for all pairs (m,n) with m 6= n.
System states are described by density operators ρ with
matrix elements ρmn := 〈m|ρ|n〉, evolving in time ac-
cording to the standard Liouville-von-Neumann equa-
tion. Given the initial condition ρ(0), the solution ρ(t)
of the latter equation can be written by means of the
propagator (unitary time evolution operator) Ut := e−iHt

(~ = 1) in the well-known form

ρ(t) = Utρ(0)U†
t , (2)

implying for the matrix elements that

ρmn(t) = ρmn(0) ei[En−Em]t . (3)

In particular ρnn(t) = ρnn(0) for all t and n (conserved
quantities).

Observables are modeled by Hermitian operators A :
H → H with eigenvalues aν and eigenvectors |ν〉,

A =

D
∑

ν=1

aν |ν〉〈ν| , (4)

and their expectation values are given by

〈A〉ρ(t) := Tr{ρ(t)A} . (5)

The largest and smallest eigenvalues of A are denoted as

amax := max
ν

aν (6)

amin := min
ν
aν , (7)

where the maximization and the minimization are over all
ν = 1, . . . , D. Accordingly, the range ∆A of A is defined
as

∆A := amax − amin . (8)

As in the main paper, the identity operator on H is
denoted as

P :=
D
∑

n=1

|n〉〈n| , (9)

the microcanonical density operator as

ρmc := P/D =
1

D

D
∑

n=1

|n〉〈n| (10)

and the corresponding microcanonical expectation values
as

〈A〉mc := Tr{ρmcA} =
1

D
Tr{A} . (11)

II. DERIVATION OF EQ. (4) FROM THE MAIN
PAPER

In this section, we provide the derivation of the rela-
tions

σ2(t) =

D
∑

m 6=n

|ρmn(0)|2 |Amn|2 ≤ max
m 6=n

|Amn|2 ,(12)

which are identical to Eq. (4) in the main paper. We
remark that the same or very similar calculations are
already contained, e.g., in [1–7], but they are repeated
here to keep the paper self-contained.

Evaluating the trace in (5) by means of the energy
basis |n〉 and exploiting (3) it follows that

〈A〉ρ(t) =

D
∑

m,n=1

ρmn(t)Anm

=

D
∑

m,n=1

ei[En−Em]tρmn(0)Anm , (13)

where Amn := 〈m|A|n〉. Indicating time averages over
arbitrary functions f(t) by

f(t) := lim
T→∞

1

T

∫ T

0

dt f(t) (14)

and exploiting the assumption that Em − En 6= 0 for all
m 6= n (see below Eq. (1)) it follows that

〈A〉ρ(t) =
D
∑

n=1

ρnn(0)Ann = Tr{ρ̄A} = 〈A〉ρ̄ , (15)
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where ρ̄ := ρ(t) and thus

ρ̄mn = δmnρmn(0) . (16)

Along the same line of reasoning one finds that

[〈A〉ρ(t)]
2 =

D
∑

m,n=1

ei[En−Em]tρmn(0)Anm

×
D
∑

j,k=1

ei[Ek−Ej ]tρjk(0)Akj

=

D
∑

m 6=n

ρmn(0)Anm

D
∑

j,k=1

ei[En−Em+Ek−Ej]tρjk(0)Akj

+

D
∑

n=1

ρnn(0)Ann

D
∑

j,k=1

ei[Ek−Ej]tρjk(0)Akj . (17)

Upon averaging over time, in the second summand only
terms with j = k survive since Ej − Ek 6= 0 for all j 6=
k. Hence, this summand can be rewritten by means of
(15) as [〈A〉ρ̄]2. Upon averaging over time in the first
summand, only terms with n = j and m = k survive as
a consequence of our above mentioned assumption (see
below Eq. (1)) that the differences Em − En are finite
and mutually different for all pairs (m,n) with m 6= n.
With the definition

σ2(t) :=
[

〈A〉ρ(t) − 〈A〉ρ̄
]2

, (18)

which is identical to Eq. (3) in the main paper, it follows
that

σ2(t) =
[

〈A〉ρ(t) − 〈A〉ρ̄
]2

=
[

〈A〉ρ(t)

]2 − [〈A〉ρ̄]2

=

D
∑

m 6=n

|ρmn(0)|2 |Amn|2 . (19)

This is the first part of (12). The second part follows
from

D
∑

m 6=n

|ρmn(0)|2 |Amn|2 ≤ max
m 6=n

|Amn|2
D
∑

m 6=n

|ρmn(0)|2 (20)

in combination with

D
∑

m 6=n

|ρmn(0)|2 ≤
D
∑

m,n=1

|ρmn(0)|2

=

D
∑

m,n=1

〈m|ρ(0)|n〉〈n|ρ(0)|m〉

=
D
∑

m

〈m|ρ(0)

(

D
∑

n=1

|n〉〈n|
)

ρ(0)|m〉

=

D
∑

m

〈m|ρ2(0)|m〉

= Tr{ρ2(0)} ≤ 1 . (21)

III. DERIVATION OF EQ. (5) FROM THE
MAIN PAPER

In this section, we provide the derivation of the relation

µU

(

σ2(t) ≥ ǫ
)

≤ 4 exp

{

− ǫD

18π3∆2
A

+ 2 lnD

}

(22)

for any ǫ > 0, which is identical to Eq. (5) in the main
paper.

As in the main paper, µU (X) denotes the fraction (nor-
malized measure) of all unitary transformations U : H →
H (uniformly distributed according to the Haar measure
[8–11]) which exhibit a certain property X . Moreover,
let us denote by 〈f(U)〉U the average over all those U ’s,
where f(U) is an arbitrary, real-valued function of U . It
follows that

µU (f(U) ≥ ǫ) = 〈θ(f(U) − ǫ)〉U (23)

for any ǫ ∈ R, where θ(x) :=
∫ x

−∞
δ(y)dy is the Heaviside

step function.
Next, we consider an arbitrary number of real-valued

functions fi of U (for convenience, arguments U are omit-
ted, while the exact range of i is irrelevant and hence not
specified). One readily verifies that

θ(max
i

{fi} − ǫ) ≤
∑

i

θ(fi − ǫ) (24)

for arbitrary fi, ǫ ∈ R. By means of (23) and (24) one
can infer that

µU (max
i

{fi} ≥ ǫ) = 〈θ(max
i

{fi} − ǫ)〉U

≤ 〈
∑

i

θ(fi − ǫ)〉U =
∑

i

〈θ(fi − ǫ)〉U

=
∑

i

µU (fi ≥ ǫ) (25)

for arbitrary real-valued functions fi of U and any ǫ ∈ R.
Similarly as in (24), one sees that

θ(
∑

i

fi −
∑

i

ǫi) ≤
∑

i

θ(fi − ǫi) (26)

for arbitrary fi, ǫi ∈ R. Similarly as in (25), it follows
that

µU (
∑

i

fi ≥
∑

i

ǫi) = 〈θ(
∑

i

fi −
∑

i

ǫi)〉U

≤ 〈
∑

i

θ(fi − ǫi)〉U =
∑

i

〈θ(fi − ǫi)〉U

=
∑

i

µU (fi ≥ ǫi) . (27)

Given an arbitrary but fixed pair m 6= n, we consider
the four normalized vectors:

|φ1〉 := (|m〉 + |n〉)/
√

2

|φ2〉 := (|m〉 − |n〉)/
√

2

|φ3〉 := (|m〉 + i|n〉)/
√

2

|φ4〉 := (|m〉 − i|n〉)/
√

2 (28)
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With the abbreviation

Aφφ := 〈φ|A|φ〉 , (29)

and exploiting that 〈m|n〉 = 0, one readily verifies that

Aφ1φ1
−Aφ2φ2

− iAφ3φ3
+ iAφ4φ4

= 2Amn (30)

and hence that

Amn = (∆1 − ∆2 − i∆3 + i∆4)/2 (31)

∆i := Aφiφi
− 〈A〉mc , i = 1, . . . , 4 (32)

where 〈A〉mc is defined in (11). It follows that |Amn| ≤
∑4

i=1 |∆i|/2 and thus

µU (|Amn| ≥ ǫ) ≤ µU

(

4
∑

i=1

|∆i| ≥ 2 ǫ
)

(33)

Choosing ǫi = ǫ/2 it follows with (27) that

µU (|Amn| ≥ ǫ) ≤
4
∑

i=1

µU

(

|∆i| ≥ ǫ/2
)

. (34)

This is a quite interesting result in itself, admitting one
to draw conclusions about off-diagonal matrix elements
from related properties of the diagonal elements.

To quantitatively exploit this virtue of (34), we invoke
the descendant of Levy’s Lemma from Eq. (7) of the
main paper (see also Ref. [12] and, in particular, Lemma
3, Lemma 5, and Eq. (64) in Ref. [13]), stating that

µU

(

|Aφφ − 〈A〉mc| ≥ ǫ
)

≤ 2 exp

{

− 2 ǫ2D

9π3∆2
A

}

(35)

for any normalized |φ〉 :=
∑D

n=1 cn|n〉. Recalling the
definitions (28) and (32) it follows from (34) and (35)
that

µU (|Amn| ≥ ǫ) ≤ 8 exp

{

− ǫ2D

18π3∆2
A

}

. (36)

In view of (25) we thus can conclude that

µU

(

max
m 6=n

|Amn| ≥ ǫ

)

≤ D(D − 1)

2
8 exp

{

− ǫ2D

18π3∆2
A

}

.

(37)
The factor D(D − 1)/2 is due to the fact that |Anm| =
|Amn|, i.e., there are only D(D− 1)/2 independent pairs
(m,n) over which one has to maximize. Upon rewriting
(37) as

µU

(

max
m 6=n

|Amn|2 ≥ ǫ

)

≤ 4 exp

{

− ǫD

18π3∆2
A

+ 2 lnD

}

.

(38)
and observing (12), we recover (22).

IV. DERIVATION OF EQ. (10) FROM THE
MAIN PAPER

In this section, we provide the derivation of the relation

µU (|B| ≥ ǫ) ≤ 2 exp

{

− 2

9π3

ǫ2D

∆2
A

+ lnD

}

(39)

for any ǫ > 0, which is identical to Eq. (10) in the main
paper.

Since all necessary steps have already been prepared
in the last section, the argument is very short: Choosing
|φ〉 = |n〉 in the descendant (35) of Levy’s Lemma and
exploiting (25) implies

µU

(

max
n

|Ann − 〈A〉mc| ≥ ǫ
)

≤ 2D exp

{

− 2 ǫ2D

9π3∆2
A

}

(40)
In combination with the relation

|B| ≤ max
n

|Ann − 〈A〉mc| , (41)

which is identical to Eq. (9) in the main paper, we thus
recover (39).

V. COMPARISON WITH THE ESTIMATES BY
VON NEUMANN AND BY PAULI AND FIERZ

In this section, we compare von Neumann’s main es-
timates, obtained in the Appendix of his work [8], and
their improvements by Pauli and Fierz in Ref. [14], with
Levy’s Lemma and its descendants, utilized as a basic
ingredient in the previous two sections.

Since von Neumann’s entire approach is formulated in
terms of projection operators, let us denote by Pd an
arbitrary projector onto a d-dimensional subspace of H.
Referring to the equation numbers in the English trans-
lation by R. Tumulka [8], we first note that the concomi-

tant matrix elements P
(d)
mn := 〈m|Pd|n〉 correspond to von

Neumann’s eρσ with ρ := m, σ := n, see Eq. (142) in
[8]. Likewise, our present D and d are named S and s
in the Appendix of [8]. Recalling that µU (X) indicates
the fraction of all U with property X (see below (22)),
relation (192) in [8] takes the form

µU

(

|eρσ|2 ≥ a
)

≤ exp{−4a(S − 5/2)} (42)

for any a > 0 and ρ 6= σ. In particular, this result is
independent of s. Returning to our present notation, we
thus obtain

µU

(

|P (d)
mn| ≥ ǫ

)

≤ exp{−4ǫ2(D − 5/2)} (43)

for any ǫ > 0, m 6= n, and independently of d. Upon
observing that ∆A = 1 when A is a projector (cf. Eq.
(8)), we see that (36) is indeed very similar to (43).

In the same vein, von Neumann’s result for the diago-

nal matrix elements P
(d)
nn from Eq. (162) in [8] (note that
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actually two summands of the form (162) contribute to
the total probability in Eq. (152) of [8]) can be rewritten
in our present notation as

µU

(

|P (d)
nn − d/D| ≥ ǫ

)

≤ 2D

e
√

2πd
exp

{

−ϑǫ
2D2

2d

}

,

(44)
provided 1 ≪ d ≪ D, where ϑ is some number slightly
smaller than one, and where ǫ must satisfy D−1 ≤ ǫ ≪
d/D. Observing that d/D = 〈Pd〉mc (cf. Eq. (11)) and
that ∆A = 1 when A is a projector (cf. Eq. (8)), we
see that von Neumann’s bound (44) is somewhat better
than the descendant (35) of Levy’s Lemma. On the other
hand, (44) is restricted to projectors Pd with 1 ≪ d≪ D,
while (35) applies to arbitrary A.

Without any further calculation, we can immediately
deduce from (44) by exploiting (34) the bound

µU

(

|P (d)
mn| ≥ ǫ

)

≤ 8D

e
√

2πd
exp

{

−ϑǫ
2D2

8d

}

. (45)

The comparison with (36) and with (43) is analogous to
the discussion below (44).

Finally, we turn to the improvement of von Neumann’s
estimate (44) by Pauli and Fierz in Appendix 2 of Ref.

[14]. We first note that our present quantity P
(d)
nn corre-

sponds to the quantity Cν
ρρ with ρ := n in [14], see Eq.

(11) therein (the index ν labels different projectors and
is of no relevance here). Likewise, our present D and d
are named S and sν in [14], and sν/S is abbreviated as
gν (see p. 579 in [14]). Recalling that µU (X) indicates
the fraction of all U with property X , relation (28) in
[14] takes the form

µU

(

Cν
ρρ − gν ≥ √

gνa
)

≤ exp{−κ
√
aS + κ+ lnS}

κ := 1 − ln 2 ≃ 0.3068 (46)

for all a > 2/(S − 2) and S ≥ 3, and likewise

µU

(

Cν
ρρ − gν ≤ −√

gνa
)

≤ exp{−κ
√
aS + κ+ lnS} .

It follows that

µU

(

[Cν
ρρ − gν]2 ≤ gνa

)

≤ 2 exp{−κ
√
aS + κ+ lnS}

= exp{−κ
√
aS + 1 + lnS} , (47)

for all a > 2/(S − 2) and S ≥ 3, where we exploited (46)
in the last relation. Returning to our present notation,
we thus obtain

µU

(

|P (d)
nn − d/D| ≥ ǫ

)

≤ eD exp

{

−κǫD√
d

}

, (48)

for all ǫ >
√

2/(D − 2) and D ≥ 3. While this esti-
mate is in fact somewhat weaker than (44), it represents
a substantial improvement in so far as there is no restric-
tion with respect to d. Similar conclusions apply to the
estimate following from (34) and (48), namely

µU

(

|P (d)
mn| ≥ ǫ

)

≤ 4 eD exp

{

−κǫD
2
√
d

}

. (49)

We finally remark that it is possible to deduce directly
from von Neumann’s estimate for projectors (43) a rela-
tion similar to the one in (22) for general observables A.
Likewise, one can deduce from the estimate by Pauli and
Fierz (48) a relation similar to (39). The main idea is to
“truncate” (or round) the eigenvalues aν of A in (4) after,
say, 20 relevant digits (cf. Eq. (2) in the main paper).
On the one hand, this does not measurably change the
expectation value 〈A〉ρ for any arbitrary but fixed ρ. On
the other hand, this approximation for A then only ex-
hibits a number of mutually different eigenvalues which
is (approximately) bounded by ∆A/δA according to Eq.
(2) of the main paper, and which is thus relatively small
compared to the dimensionality D of H. Consequently,
one is left with a relatively small number of pertinent
projectors, to each of which the above estimates by von
Neumann and by Pauli and Fierz can be applied (at this
point it is important that those estimates are valid for
arbitrary d). However, the technical details are quite
lengthy and therefore omitted here.

In conclusion, quite similar results can be obtained ei-
ther by invoking Levy’s Lemma or by exploiting the esti-
mates by von Neumann and by Pauli and Fierz, but the
calculations are considerably shorter in the first case.

VI. DERIVATION OF EQ. (11) FROM THE
MAIN PAPER

In this section, we provide the derivation of the relation

µV (S[ρmc] − S[ρ̄] ≥ s) ≤ kB/s (50)

for any s > 0, which is identical to Eq. (11) in the main
paper.

We start by recalling the definition

S[ρ] := −kBTr{ρ lnρ} (51)

of the von Neumann entropy of an arbitrary density oper-
ator ρ, where kB is Boltzmann’s constant. Furthermore,
we can rewrite (16) as ρ̄mn = δmn pn, where the level
populations

pn := ρnn(0) (52)

satisfy 0 ≤ pn ≤ 1 and
∑D

n=1 pn = 1. It readily follows
that

S[ρ̄] = −kB

D
∑

n=1

pn ln pn (53)

D
∑

n=1

pl
n = Tr{ρ̄l} (54)

for any l ∈ N.
Introducing the microcanonical density operator from

(10) into (51) yields

S[ρmc] = −kB

D
∑

n=1

(1/D) ln(1/D) = kB lnD . (55)
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It follows with (53) that

∆S :=
S[ρmc] − S[ρ̄]

kB

=

D
∑

n=1

pn (ln pn − ln(1/D)) . (56)

Since
∑D

n=1(−pn + 1/D) = 0 we can conclude that [14]

∆S =

D
∑

n=1

L(pn, 1/D) (57)

L(x, y) := x (lnx− ln y) − x+ y , (58)

where x, y > 0 is tacitly assumed. Rewriting L(x, y) as
yf(x/y) with f(x) := x ln x − x + 1, one readily verifies
that f(x) ≥ 0 for all x > 0 and hence that L(x, y) ≥ 0
for all x, y > 0. Furthermore, one can infer from (58)
that yL(x, y) + xL(y, x) = (x − y)2. Since xL(y, x) ≥ 0
it follows that

0 ≤ L(x, y) ≤ (x − y)2/y (59)

for all x, y > 0 [14]. Introducing this result into (57)
yields

0 ≤ ∆S ≤
D
∑

n=1

D(pn − 1/D)2

=

(

D
D
∑

n=1

p2
n

)

− 1 = DTr{ρ̄2} − 1 (60)

where we used (54) in the last step.
Denoting by rj and |ψj〉 the eigenvalues and eigenvec-

tors of the density operator ρ(0) implies that

ρ(0) =

D
∑

j=1

rj |ψj〉〈ψj | (61)

D
∑

j=1

rl
j = Tr{ρl(0)} (62)

for any l ∈ N.
Recalling that V represents the unitary basis transfor-

mation between the eigenvectors of ρ(0) and those of H
(see main paper) and that those eigenvectors are denoted
as |ψj〉 and |n〉, the transformation matrix elements are
given by

Vnj := 〈n|ψj〉 . (63)

Furthermore, (52) can be rewritten as

pn = 〈n|ρ(0)|n〉 =

D
∑

j=1

〈n|ρ(0)|ψj〉〈ψj |n〉

=

D
∑

j=1

rj〈n|ψj〉(〈n|ψj〉)∗ =

D
∑

j=1

rj |Vnj |2 (64)

and hence

p2
n =

D
∑

j,k=1

rjrk|VnjVnk|2 . (65)

As in the main paper, µV (X) indicates the fraction
(normalized measure) of all unitary transformations V :
H → H (uniformly distributed according to the Haar
measure [8–11]) which exhibit a certain property X .
Moreover, let us denote by 〈f(V )〉V the average over all
those V ’s, where f(V ) is an arbitrary real-valued func-
tion of V . Similarly as in (23), it follows that

µV (|f(V )| ≥ ǫ) = 〈θ(|f(V )| − ǫ)〉V (66)

for any ǫ > 0, where θ(x) :=
∫ x

−∞
δ(y)dy is the Heaviside

step function. Hence,

〈θ(|f(V )| − ǫ)〉V ≤ 〈|f(V )/ǫ|aθ(|f(V )| − ǫ)〉V
≤ 〈|f(V )/ǫ|a〉V (67)

for any a > 0. By comparison with (66) we thus recover
Markov’s inequality

µV (|f(V )| ≥ ǫ) ≤ ǫ−a〈|f(V )|a〉V (68)

for any real valued function f(V ) and arbitrary ǫ, a > 0.
In the following, we will prove (50) with the help of

(68). To begin with, we average (65) over V , yielding

〈p2
n〉V =

D
∑

j,k=1

rjrk〈|VnjVnk|2〉V . (69)

In doing so, we have exploited that only the eigenbases of
H and ρ(0) change relatively to each other upon variation
of V , while the eigenvalues rj are kept fixed.

Averages as those on the right hand side of (69) have
been evaluated repeatedly and often independently of
each other in the literature, see e.g. [15–20]. Specifi-
cally, the two results (A6) and (A8) from the Appendix
in Ref. [15] (or Eq. (2.4) from [19]) can be readily unified
and rewritten as

〈|VnjVnk|2〉V =
1 + δjk

D(D + 1)
. (70)

Introducing this result into (69) and exploiting (62) yields

〈p2
n〉V =

(

∑D
j=1 rj

)2

+
∑D

j=1 r
2
j

D(D + 1)
=

=
(Tr{ρ(0)})2 + Tr{ρ2(0)}

D(D + 1)
≤ 2

D(D + 1)
(71)

Upon averaging over V in (60) we thus can conclude that

〈∆S〉V ≤
(

D

D
∑

n=1

2

D(D + 1)

)

− 1 =
D − 1

D + 1
≤ 1 (72)
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Finally, by choosing f(V ) := ∆S, ǫ := s/kB, and a := 1
in (68) we can conclude from (56) and (72) that

µV (|S[ρmc] − S[ρ̄]| ≥ s) ≤ kB/s (73)

From (60) and (56) we recover the well-known relation
S[ρmc] ≥ S[ρ] for all ρ. As a consequence, (73) implies
(50).

VII. DERIVATION OF EQ. (12) FROM THE
MAIN PAPER

In this section, we first demonstrate the relation

σ2(t) ≤ (∆2
A/4)Tr{ρ̄2} , (74)

mentioned in the main paper above Eq. (12) therein.
In a second step, we then provide the derivation of the
result

µV

(

σ2(t) ≥ ǫ
)

≤ ∆2
A/(2ǫD) (75)

for any ǫ > 0, which is identical to Eq. (12) in the main
paper. We remark that (74) has already been obtained,
e.g., in [4–7], but to make the paper self-contained, we
derive here the relation once again.

We define Ã := A− αP for any α ∈ R, where P is the
identity operator from (9). It follows that Ãmn = Amn

for all m 6= n and with (12) that

σ2(t) =
D
∑

m 6=n

|ρmn(0)|2 |Ãmn|2

≤
D
∑

m,n=1

|ρmn(0)|2 |Ãmn|2 . (76)

It furthermore follows that the eigenvalues ãν of Ã and
the eigenvalues aν of A are connected via ãν = aν −α for
all ν = 1, . . . , D. Choosing

α := (amax + amin)/2 , (77)

where amax and amin are defined in (6), (7), we can con-
clude from (8) that

|aν − α| ≤ ∆A/2 (78)

for all ν. It follows that

〈ψ|Ã2|ψ〉 ≤ ∆2
A/4 (79)

for any normalized vector |ψ〉 ∈ H.
Since ρ(0) is a non-negative operator it follows

by Cauchy-Schwarz’s inequality that |ρmn(0)|2 ≤
ρmm(0)ρnn(0) = pnpm, where we used (52) in the last

relation. We thus can rewrite (76) as

σ2(t) ≤
D
∑

m,n=1

pmpn|Ãmn|2

≤
D
∑

m,n=1

bmncmn (80)

bmn := pn |Ãmn| (81)

cmn := pm |Ãmn| (82)

Invoking Cauchy-Schwarz’s inequality once more it fol-
lows that

σ2(t) ≤

√

√

√

√

D
∑

m,n=1

|bmn|2
D
∑

m,n=1

|cmn|2

=
D
∑

m,n=1

|bmn|2

=

D
∑

n=1

p2
n 〈n|Ã

(

D
∑

m=1

|m〉〈m|
)

Ã|n〉

=
D
∑

n=1

p2
n 〈n|Ã2|n〉

≤ ∆2
A

4

D
∑

n=1

p2
n , (83)

where we used (79) in the last step. Exploiting (54), one
readily recovers (74).

With (71) one can conclude from (83) that

〈σ2(t)〉V ≤ ∆2
A

4

D
∑

n=1

2

D(D + 1)
≤ ∆2

A

2D
(84)

Choosing f(V ) := σ2(t) and a := 1 in (68) we finally
recover (75).

VIII. DERIVATION OF EQS. (14) AND (15)
FROM THE MAIN PAPER

This section provides the derivation of the relations
(14) and (15) in the main paper, namely

µW

(

σ2
mc(t) ≥ ǫ

)

≤ ∆2
A/(ǫD) (85)

for arbitrary t and ǫ > 0, and

µW

(

1

t2 − t1

∫ t2

t1

σ2
mc(t) dt ≥ ǫ

)

≤ ∆2
A/(ǫD) (86)

for arbitrary t1 < t2.
We consider an arbitrary but fixed density operator

ρ and denote its eigenvalues and eigenvectors as rn and
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|ψn〉. Similarly as in (61), (62) it follows that

ρ =

D
∑

n=1

rn|ψn〉〈ψn| (87)

D
∑

n=1

rl
n = Tr{ρl(t)} (88)

for any l ∈ N, and likewise for A from (4):

D
∑

ν=1

al
ν = Tr{Al} (89)

We denote by W̃ the unitary basis transformation be-
tween the eigenvectors of ρ and those of A with matrix
elements

W̃nν := 〈ψn|ν〉 . (90)

It follows with (87) that

Tr{ρA} =

D
∑

n=1

〈ψn|ρA|ψn〉

=
D
∑

n=1

rn〈ψn|A|ψn〉 (91)

and hence with (4) and (90) that

Tr{ρA} =

D
∑

n,ν=1

rn〈ψn|ν〉〈ν|A|ψn〉

=
D
∑

n,ν=1

rnaνW̃nνW̃
∗
nν . (92)

Similarly as in (69) this yields upon averaging over W̃
(uniformly distributed according to the Haar measure [8–
11]) the result

〈Tr{ρA}〉W̃ =
D
∑

n,ν=1

rnaν〈|W̃nν |2〉W̃ . (93)

Likewise, squaring (92) and then averaging over W̃ yields

〈[Tr{ρA}]2〉W̃ =
D
∑

m,n,µ,ν=1

rmrnaµaν〈|W̃mµW̃nν |2〉W̃ . (94)

As already mentioned above (70), averages as those
appearing on the right hand side of (93) and (94) are
well-known. For example, formulae (A5), (A6), (A8),
(A10), (A12) in the Appendix of Ref. [15] can be readily
recast into the form

〈|W̃nν |2〉W̃ =
1

D
(95)

〈|W̃nµW̃nν |2〉W̃ =
1 + δµν

D(D + 1)
(96)

〈|W̃mµW̃nν |2〉W̃ =
1 − δµν/D

D2 − 1
if m 6= n . (97)

By exploiting (95), (88), and (89), one finds from (93)
that

〈Tr{ρA}〉W̃ =
1

D

D
∑

n,ν=1

rnaν =
1

D
Tr{ρ}Tr{A} . (98)

The evaluation of (94) is similar but more tedious. We
start by splitting the sum into contributions with m = n
and with m 6= n,

〈[Tr{ρA}]2〉W̃ = Σ1 + Σ2 (99)

Σ1 :=

D
∑

n=1

D
∑

µ,ν=1

r2naµaν〈|W̃nµW̃nν |2〉W̃ (100)

Σ2 :=

D
∑

m 6=n

D
∑

µ,ν=1

rmrnaµaν〈|W̃mµW̃nν |2〉W̃ (101)

Introducing (96) into (100) yields

Σ1 =
D
∑

n=1

r2n

∑D
µ,ν=1 aµaν +

∑D
ν=1 a

2
ν

D(D + 1)

= Tr{ρ2} [Tr{A}]2 + Tr{A2}
D(D + 1)

, (102)

where we exploited (88) and (89) in the last step. Anal-
ogously, one finds with (97) that

Σ2 =

D
∑

m 6=n

rmrn

∑D
µ,ν=1 aµaν −∑D

ν=1 a
2
ν/D

D2 − 1

=
(

[Tr{ρ}]2 − Tr{ρ2}
) [Tr{A}]2 − Tr{A2}/D

D2 − 1
(103)

Finally, a straightforward but somewhat lengthy calcula-
tion yields

〈[Tr{ρA}]2〉W̃ − [〈Tr{ρA}〉W̃ ]2 =

=

(

Tr{ρ2}−[Tr{ρ}]2/D
) (

Tr{A2}−[Tr{A}]2/D
)

D2 − 1
.(104)

This result is still symmetric with respect to interchang-
ing ρ and A since we only exploited so far the fact that
ρ is a Hermitian operator but not yet any of its special
properties as a density operator.

By exploiting (10) we can conclude from (98) that

〈Tr{ρA}〉W̃ = Tr{ρmcA} = 〈Tr{ρmcA}〉W̃ (105)

and hence that

〈[Tr{ρA}]2〉W̃ − [〈Tr{ρA}〉W̃ ]2 =

= 〈[Tr{ρA} − Tr{ρmcA}]2〉W̃ . (106)

Furthermore, the last term in (104) can be rewritten as

Tr{A2} − [Tr{A}]2/D = D [〈A2〉mc − 〈A〉2mc] . (107)
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Likewise, one finds that

Tr{ρ2} − [Tr{ρ}]2/D = Tr{ρ2} − 1/D

= Tr{(ρ− ρmc)
2} . (108)

Hence, this term is non-negative, vanishes if and only if
ρ = ρmc, and can be estimated from above for arbitrary
ρ by 1 − 1/D = (D − 1)/D. Altogether, we thus can
conclude from (104) that

〈[Tr{ρA} − Tr{ρmcA}]2〉W̃ ≤ 〈A2〉mc − 〈A〉2mc

D

=
〈[A− 〈A〉mc]

2〉mc

D
. (109)

The numerator on the right hand side represents the ther-
mal equilibrium fluctuations of A in the microcanonical
ensemble. In particular, this term is non-negative and
can be estimated from above by ∆2

A according to (8), i.e.

〈[Tr{ρA} − Tr{ρmcA}]2〉W̃ ≤ ∆2
A/D . (110)

So far, ρ was still an arbitrary density operator. Next,
we choose ρ = ρ(t) for an arbitrary but fixed t. With the
definition

σ2
mc(t) :=

[

〈A〉ρ(t) − 〈A〉mc

]2
, (111)

which is identical to Eq. (13) in the main paper, we thus
can rewrite (110) as

〈σ2
mc(t)〉W̃ ≤ ∆2

A/D . (112)

As in the main paper, we denote by W the unitary ba-
sis transformation between the eigenvectors of ρ(0) and

those of A. On the other hand, W̃ was defined as the ba-
sis transformation between the eigenvectors of ρ = ρ(t)
and those of A. The connection between ρ(t) and ρ(0)
is provided by (2), where the propagator Ut : H → H

is a unitary operator for any given t. In fact, the same
basic relation (2) is well-known to apply even for time de-
pendent Hamiltonians H(t) : H → H. The salient point
is that Ut unitarily transforms the basis of ρ(0) into the
basis of ρ(t), and that for a given t, the very same trans-
formation Ut applies to any ρ(0), in particular indepen-
dently of the basis of ρ(0). As a consequence, averaging
uniformly (i.e. according to the Haar measure) over all
bases of ρ(0) is equivalent [11] to averaging uniformly
over all bases of ρ(t) in (112), i.e.

〈σ2
mc(t)〉W ≤ ∆2

A/D . (113)

Since t was arbitrary but fixed, the latter result is valid
for any choice of t.

Exploiting that averaging and integrating are commut-
ing operations, we can infer from (113) that

〈

1

t2 − t1

∫ t2

t1

σ2
mc(t) dt

〉

W

=

=
1

t2 − t1

∫ t2

t1

〈σ2
mc(t)〉W dt ≤ ∆2

A/D (114)

for arbitrary t1 < t2.
Denoting by µW (X), as usual, the fraction (normalized

measure) of all unitary transformations W : H → H
which exhibit a certain property X , and by 〈f(W )〉W the
average over all those W ’s for an arbitrary real valued
function f(W ), one recovers, similarly as in (66)-(68),
Markov’s inequality

µV (|f(W )| ≥ ǫ) ≤ ǫ−a〈|f(W )|a〉W (115)

for any ǫ, a > 0. Upon choosing f(W ) := σ2
mc(t) and

a := 1, Eq. (113) implies (85). Similarly, Eq. (114)
implies (86).

We finally note that (75) actually includes (74) as spe-
cial cases when t1 ↑ t and t2 ↓ t.
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