SoSe 2024

Übungsblatt 5

http://www.physik.uni-bielefeld.de/~reimann/RdP2.html

Schriftlich abzugeben sind: a und b in jeder Aufgabe

Aufgabe 17

Betrachen Sie das Skalarfeld $\phi(x_1, x_2) := \int_a^{x_1} dy \, f(y, x_2)$, den Weg $\vec{r}(t) := r_1(t) \, \vec{e}_1 + r_2(t) \, \vec{e}_2$ und die Funktion $F(t) := \phi(\vec{r}(t))$.

- a) Verifizieren Sie $\frac{\partial \phi(x_1,x_2)}{\partial x_1} = f(x_1,x_2)$ und $\frac{\partial \phi(x_1,x_2)}{\partial x_2} = \int_a^{x_1} dy \, \frac{\partial f(y,x_2)}{\partial x_2}$. **Hinweis:** Kapitel 13.1 und 13.2.
- b) Was folgt damit für die totale Ableitung $\frac{dF(t)}{dt}$ (vgl. Seite 13.9 der Vorlesung).
- c) Was folgt damit für $\frac{d}{dt} \int_a^{r_1(t)} dy \, f(y, r_2(t))$ und speziell für $\frac{d}{dt} \int_a^t dy \, f(y, t)$?
- d) Bestimmen Sie die Ableitung von $\int_0^x dy \frac{\sin(xy)}{y}$ nach x.

Aufgabe 18

Wir betrachten eine Fäche $\vec{r}: \mathbb{R}^2 \supset T \to B \subset \mathbb{R}^3$, $\vec{u} \mapsto \vec{r}(\vec{u})$ der speziellen Form $\vec{r}(\vec{u}) = \vec{e}_1 u_1 + \vec{e}_2 u_2 + \vec{e}_3 f(u_1, u_2)$ mit einem Skalarfelder $f(x_1, x_2)$ (siehe auch Aufg. 1). Das Flächenstück $B := \{\vec{r}(\vec{u}) \mid \vec{u} \in T\}$ kann somit auch als Graph der Funktion $f(\vec{x})$ oder als Lösungsmenge der Gleichung $x_3 = f(x_1, x_2)$ betrachtet werden.

- a) Bestimmen Sie $\frac{\partial \vec{r}(\vec{u})}{\partial u_1} \times \frac{\partial \vec{r}(\vec{u})}{\partial u_2}$ und $\left| \frac{\partial \vec{r}(\vec{u})}{\partial u_1} \times \frac{\partial \vec{r}(\vec{u})}{\partial u_2} \right|$
- b) Wie lässt sich damit der Flächeninhalt A_B von B schreiben? Vergleiche mit Aufg. 10.
- c) Berechnen Sie A_B für $f(x_1, x_2) = x_1 + x_2^{3/2}$ und $T = [0, 1] \times [0, 1]$.

Aufgabe 19

Sei $f: \mathbb{R} \to \mathbb{R}$ differenzierbar und $\vec{x} \in \mathbb{R}^n$. Bestimmen Sie den Gradienten von

- a) $\Phi(\vec{x}) := f(\vec{a} \cdot \vec{x})$, wo $\vec{a} \in \mathbb{R}^n$ beliebig aber fest. (Resultat: $\vec{a} f'(\vec{a} \cdot \vec{x})$.)
- b) $\Phi(\vec{x}) := f(|\vec{x}|), \ \vec{x} \neq \vec{0}$. (Resultat: $\vec{e}_x f'(|\vec{x}|)$ mit $\vec{e}_x := \vec{x}/|\vec{x}|$.)
- c) $\Phi(\vec{x}) := \ln(|\vec{x}|), \ \vec{x} \neq \vec{0}.$
- d) $\Phi(\vec{x}) := |\vec{x}|^q, q \in \mathbb{R}, \vec{x} \neq \vec{0}.$
- e) $\Phi(\vec{x}) := (\vec{x} \times \vec{a}) \cdot \vec{b}$, wo \vec{a} , \vec{b} beliebig aber fest und \vec{x} , \vec{a} , $\vec{b} \in \mathbb{R}^3$.