SoSe 2024

Übungsblatt 2

http://www.physik.uni-bielefeld.de/~reimann/RdP2.html

Da wir in Rechenmethoden der Physik 2 noch nicht sehr weit sind, beziehen sich die meisten Aufgaben weiterhin auf den Inhalt von Rechenmethoden der Physik 1.

Schriftlich abzugeben sind: 5a, 6a, 7a, 8a

Aufgabe 5

Wie in Kap. 13.3 der Vorlesung betrachten wir folgende partielle Differentialgleichung:

$$\frac{\partial^2 f(x,t)}{\partial t^2} = c^2 \frac{\partial^2 f(x,t)}{\partial x^2}$$
 (sog. Wellengleichung).

- a) Zeigen Sie: Jede Funktion f(x,t) der Form $f(x,t) = g_1(x-ct) + g_2(x+ct)$ löst diese Gleichung für beliebige (zweimal differenzierbare) Funktionen $g_{1,2}(x)$.
- b) Diskutieren Sie das Resultat aus a) analog zu Kap. 13.3 der Vorlesung.

Aufgabe 6

- a) Bestimmen Sie das Integral $\int_{0}^{1} dx_1 \int_{0}^{1} dx_2 \int_{0}^{\pi} dx_3 \ x_1 \cos(x_1 x_3) e^{-x_2}$ gemäß Kap 13.4.
- b) Was ist das Resultat von $\int_{0}^{1} dx_{2} \int_{0}^{x_{2}} dx_{3} x_{1}^{2} \cos(x_{1}x_{3}) e^{x_{1}}$?

Aufgabe 7

Gegeben sei das Vektorfeld $\vec{f}(\vec{x}) := \begin{pmatrix} x_2^3 \\ x_1 \\ x_1x_2x_3 \end{pmatrix}$ mit $\vec{x} := (x_1, x_2, x_3)$. Bestimmen Sie

- a) Das Skalarfeld $\operatorname{div}(\vec{f}(\vec{x})) := \frac{\partial}{\partial x_1} f_1(\vec{x}) + \frac{\partial}{\partial x_2} f_2(\vec{x}) + \frac{\partial}{\partial x_3} f_3(\vec{x})$ ("Divergenz von \vec{f} ").
- b) Das Vektorfeld $\operatorname{rot}(\vec{f}(\vec{x})) := \begin{pmatrix} \partial f_3(\vec{x})/\partial x_2 \partial f_2(\vec{x})/\partial x_3 \\ \partial f_1(\vec{x})/\partial x_3 \partial f_3(\vec{x})/\partial x_1 \\ \partial f_2(\vec{x})/\partial x_1 \partial f_1(\vec{x})/\partial x_2 \end{pmatrix}$ ("Rotation von \vec{f} ").

Aufgabe 8

Betrachten Sie folgenden Weg im \mathbb{R}^2 : $\vec{r}(t) := \begin{pmatrix} t - \sin t \\ 1 - \cos t \end{pmatrix}$ (sog. Zykloide).

- a) Berechnen Sie die Bogenlänge $S_{\mathcal{C}}$ für $t \in I := [0, 2\pi]$. Hinweis: Zeigen und benutzen Sie: $1 \cos(2x) = 2\sin^2(x)$.
- b) Machen Sie sich klar, dass $\vec{r}(t)$ die Bewegung eines Punktes auf der Peripherie eines (schupffrei) rollenden Rades mit Radius 1 beschreibt.

Hinweis: Suchen Sie auf Google nach "Was man mit Sinus und Kosinus z.B. macht: Zykloide" und schauen Sie sich das gefundene Video auf YouTube an.