Nanoscopy

Marcel, Wolfgang

Biomolecular Photonics, Bielefeld University

SoSe 2015

SIM reconstruction algorithm

- Image formation in SIM
- Fourier space decomposition
- Measurement with structured illumination
- Illumination in Fourier space
- Illumination parameter estimation
- Fourier space shifts and separation

2 Summary and Outlook

SoSe 2015

Sorry, some math...

$$\frac{\partial \theta}{\partial \theta} MT(\xi) = \frac{\partial}{\partial \theta} \int_{R_{n}}^{T} T(x) f(x, \theta) dx = \int_{R_{n}}^{1} \frac{\partial}{\partial \theta} \int_{R_{n}}^{1}$$

Math (from here)

Image formation in SIM

$$M_{l}(x,y) = \int_{S_{z}} \mathsf{PSF}(x,y,z) * (l_{l}(x,y,z) \cdot S(x,y,z)) \, \mathrm{d}z \tag{1}$$
$$l(x,y,z) = \mathsf{PSF}_{\mathsf{ex.}}(x,y,z) * l'(x,y,z) \tag{2}$$

- Interested in: Sample response (fluorescence density) S(x, y, z).
- Limited by: PSF, i.e. Abbe limit lateral, background axial
- All SIM approaches:
 - Obtain S(x, y, z)
 - by combining multiple measurements M_I
 - for different illuminations $I_i(x, y, z)$
- Keep in mind: Illumination also limited by PSF_{ex.}.

Solve for S(x, y, z)

$$M_{l}(x,y) = \int_{S_{z}} \mathsf{PSF}(x,y,z) * (l_{l}(x,y,z) \cdot S(x,y,z)) \, \mathrm{d}z \tag{3}$$
$$l(x,y,z) = \mathsf{PSF}_{\mathsf{ex.}}(x,y,z) * l'(x,y,z) \tag{4}$$

- Convolution integral: No direct solution for S(x, y, z)
- Iterative solvers possible, but that is more advanced
- Direct solution
 - possible for specific forms of $l_1(x, y, z)$
 - by decomposition in Fourier space

Decomposition in Fourier space

$$\tilde{M}_{l}(k_{x,y}) = \int_{S_{z}} \mathsf{OTF}(k_{x,y,z}) \cdot \left(\tilde{l}_{l}(k_{x,y,z}) * \tilde{S}(k_{x,y,z})\right) dz$$
(5)
$$\tilde{l}(k_{x,y,z}) = \mathsf{OTF}_{\mathsf{ex.}}(k_{x,y,z}) \cdot \tilde{l}'(k_{x,y,z})$$
(6)

- In Fourier space: $I(k_{x,y,z})$ folds with $S(k_{x,y,z})$
- Assume $l(k_{x,y,z}) = \sum_i \delta_i(k_{x,y,z})$
- Then M_l given by
 - Finite sum of shifted copies of S(k_{x,y,z})
 - Each shift position given by $k_{x,y,z}$ in $\delta_i(k_{x,y,z})$
- Collect as many M_i as there are $\delta_i(k_{x,y,z})$
 - \rightarrow directly solvable for $S(k_{x,y,z})$
- 2D SIM: 2 peaks from sin, 1 peak from DC

Step 1: Measurement for structured illumination

Regular illumination pattern

Use

$$I_l(x,y) = \frac{I_0}{2} \cdot \left[1 + \sin((2\pi \cdot p + \phi)/\kappa)\right]$$

where

$$p = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

Multiple measurements

- Use multiple angles α for illumination Typically 3 or 4, evenly spaced
- For each angle, illuminate with (at least) 3 phases $\phi = \frac{0}{3}\pi, \frac{2}{3}\pi, \frac{4}{3}\pi$
 - Phases not evenly spaced: loss of SNR
 - More than three phases: Reconstruction gets over-defined, but still possible
- Number of angles: Full resolution enhancement along each angle α .

Step 1: Illumination pattern

Left: First illumination pattern. Right: Montage of all illumination patterns

Step 1: Measurement (2D SIM)

Test surface dye-filled beads. Pattern spacing: 256 nm ($\sim 86\%$ of resolution limit).

Left: First illumination pattern. Right: Cut-out, montage of all patterns Any visible variation between the different patterns?

Nanoscopy

Step 1: Measurement (2D TIRF SIM)

Test surface dye-filled beads. Pattern spacing: $256 \ \mathrm{nm}$ (at resolution limit).

Left: First illumination pattern. Right: Cut-out, montage with spectrum LUT Look closely at the bright structures...

Marcel, Wolfgang (Bielefeld)

Nanoscopy

SoSe 2015 10 / 26

Step 2: Illumination in Fourier space

$$I_l(x,y) = \frac{I_0}{2} \cdot \left[1 + \sin((2\pi \cdot p + \phi)/\kappa)\right]$$

where

$$p = x \cdot \cos(\alpha) + y \cdot \sin(\alpha)$$

Left: Illumination pattern. Right: FFT / FHT power spectrum

Three dots in FFT

c • • •

Step 2: Illumination in Fourier space

$$ilde{\mathcal{M}}_{l}(k_{x},k_{y})=\mathsf{OTF}\cdot\left(ilde{\mathcal{S}}(k_{x},k_{y})* ilde{l}_{l}(k_{x},k_{y})
ight)$$

Test surface

 $\label{eq:left_limit} \begin{array}{l} \mbox{Left: Illumination pattern. Right: FFT / FHT power spectrum} \\ Fourier space reveals the illumination pattern^1. \end{array}$

 $^1 \rm but$ only because $\kappa \sim 0.8 \kappa_{\rm max}$

Marcel, Wolfgang (Bielefeld)

SoSe 2015 12 / 26

Step 2: Acquire parameters

- Three peaks in FFT power spectrum: Center "DC" and symmetric $sin(2\pi \cdot p + \phi)$ -contribution.
- Position directly translates to κ, α.
- The phase φ is contained in z = r · e^{iφ}, as the FFT yields a complex number. However, it is easily distorted by other structures in the sample.

Step 3: Decompose the measurements

Measurement

Three phases ϕ_0, ϕ_1, ϕ_2 for illumination, each row in *K* represents one measurement:

$$\mathcal{K} = \begin{pmatrix} 1 & \frac{1}{2}e^{i\phi_0} & \frac{1}{2}e^{-i\phi_0} \\ 1 & \frac{1}{2}e^{i\phi_1} & \frac{1}{2}e^{-i\phi_1} \\ 1 & \frac{1}{2}e^{i\phi_2} & \frac{1}{2}e^{-i\phi_2} \end{pmatrix}$$

Columns: DC contributions, two symmetric contributions from the sinusoidal form.

Decomposition

Invert^a K to K^{-1} . Via K^{-1} , get the DC contribution (wide-field) and higher frequencies.

 $a^{3} \times 3$ matrix, otherwise Moore-Penrose pseudo inverse

Step 3: Spatial results of decomposition

DC component reconstructs to an images with wide-field characteristics. Sinusoidal components not yet meaningful, but: κ and α have not been used so far. \bigcirc \bigcirc

Marcel, Wolfgang (Bielefeld)

Nanoscopy

SoSe 2015 15 / 26

Step 3: Shifting frequency components

Compute shift

- DC component: Widefield, done.
- Two symmetric components: $sin((2\pi \cdot p + \phi)/\kappa)$, where $p = x \cdot cos(\alpha) + y \cdot sin(\alpha)$
- $\bullet\,$ Shift these contributions by $\pm\kappa,\alpha$

Result

- Pixels needed for shift: Resolution enhancement
- $+\kappa$ and $-\kappa$: contain the same information by definition
- Spatial transformation: Structure becomes apparent

Step 3: Added frequency components

Add up the DC and shifted sinusoidal components. Result: Resolution-enhancement along illumination pattern direction α .

Interim result

- Sinusoidal pattern², 3 contributions in Fourier space
- Matrix inversion, decomposition and shift
- Resolution enhancement along the pattern direction
- Number of phases: At least 3, more lead to an over-defined matrix
- \bullet When measuring these 3 phases, κ and α have to be fixed, phases should be evenly spaced.
- Number of angles: Arbitrary, but usually 3 or 4 to fill the Fourier space.
- κ may change between angles α .
- **Resolution enhancement:** Directly given by pattern spacing κ .

²Other pattern: How does their Fourier transform look like?

Step 4: Measure for multiple angles α

Three angles α . Resolution enhancement along each angle of the pattern. Next step: Combine these spectra.

Step 4: Combine all angles

$$\tilde{M}_{l}(k_{x},k_{y}) = \mathsf{OTF}(k_{x},k_{y}) \cdot \left(\tilde{S}_{l}(k_{x},k_{y}) * \tilde{I}(k_{x},k_{y})\right)$$

Low, high and all frequency components

Low frequency widefield, high frequency additional information, all frequencies combined. Close, but not quite right. What is missing?

Marcel, Wolfgang (Bielefeld)

Nanoscopy

Step 5: OTF frequency filtering

$$ilde{\mathcal{M}}_l(k_{\mathrm{x}},k_{\mathrm{y}}) = \mathsf{OTF} \cdot \left(ilde{\mathcal{S}}(k_{\mathrm{x}},k_{\mathrm{y}}) * ilde{l}_l(k_{\mathrm{x}},k_{\mathrm{y}})
ight)$$

- So far, result looks better, but not quite right
- Transfer function: Not only limits resolution, but dampens high frequencies
- This leads to problems when shifting components around
- Solution: Divide by OTF in frequency domain.
- However: Low to zero regions in OTF will cause artifacts
- Full solution: frequency filtering

Step 5: (modified/generalized) Wiener filter

$$\tilde{R}(k_{x}, k_{y}) = \sum_{l} \frac{OTF(k_{x}, k_{y})\tilde{M}_{l}(k_{x}, k_{y})}{OTF^{2}(k_{x}, k_{y}) + \omega}$$

- Multiply by OTF and divide by OTF², thus: Result without frequency dampening
- Numerator: One contribution of OTF is multiplied in post-processing, one is inherent to the measurement.
- Parameter ω: Artificial high-frequency dampening.
 Dominates in regions of a low OTF, with quadratic response.
- Determining the OTF: Big difference between 2D and 3D: 2D: Use any OTF (Gaussian, Bessel, ...) with a somewhat matching FWHM 3D: Measure a quite exact OTF along the axial direction.
- There are more involved filtering methods available (e.g. iterative ones like total variations)

But: No further information is generated by filtering.

Step 5: Result of Wiener filtering

Reconstruction with different Wiener filter settings:

0.05, 0.1, 0.5, 2, 10, 50

<u>@ 00</u>

Step 5: Apotization

$$\tilde{S}'(k_x, k_y) = \mathsf{APO} \cdot \sum_l \frac{\mathsf{OTF}(k_x, k_y) \tilde{M}_l(k_x, k_y)}{\mathsf{OTF}^2(k_x, k_y) + \omega}$$

- After the filtering step, $R(k_x, k_y)$ now has no "natural" dampening of higher frequencies.
- This leads to harsh contrasts that would not be obtained by a higher resolution microscope
- Fix: Multiply an apotization function APO to the result
- APO: An artificial OTF, dampening high frequency components the same way a microscope would
- FWHM of the APO: motivated by the higher resolution limit set through the original OTF, κ and (to a lesser degree) ω .
- In practice: Start with FWHM_{APO} = $2 \cdot$ FWHM_{OTF}, tweak ω and APO with lots of leeway.

Step 5: Final result

200 nm Tetraspeck beads, excitation at 643 nm, measured on a DeltaVision OMX (GE LifeScience), Wide-field [A], filtered wide-field [B], single slice 2D SIM-reconstruction by our software [C], 3D SIM reconstruction of the same slice, by SoftWORX (Applied Precision/GE LifeScience) [D].

Wide-field [A], filtered wide-field [B], single slice 2D SIM reconstruction by our software [C], 3D SIM reconstruction of the same slice, by SoftWORX (Applied Precision/GE LifeScience) [D]. LSEC actin filaments are labeled with AlexaFluor 488 / Phalloidin, measured on a DeltaVision OMX (GE LifeScience).

Summary and Outlook

Algorithm presented today

- Sinusoidal form needed
- 2D since ≈ 2000, 3D since ≈ 2008.
- In Bielefeld: OMX and self-made setup
- In development: Free, open-source reconstruction software

Outlook next lectures

- SIM: Extension to 3D
- SIM: Iterative solvers
- Localization microscopy

