Nanoscopy

Marcel, Wolfgang

Biomolecular Photonics, Bielefeld University

SoSe 2015

Tips for literature

2 Resolution, point-spread function

- PSF point spread function
- OTF optical transfer function
- Coherent and incoherent imaging
- PSF approximation

Noise

- Camera noise
- Photon shot noise
- Noise in Fourier space

Background

- Examples
- 3D PSF

5 Summary

Literature

- Optics in Fourier space
 Introduction to Fourier optics
 Goodman, Joseph W.
 maybe take the 2005 3. edition, not 1968
- Light sources and microscopy design: Zeiss campus website http://zeiss-campus.magnet.fsu.edu

The simplified view of a microscope

 $M(x',y') = I \cdot S(x,y)$

- M(x', y') the light intensity measured (by some means) at position x', y' on the image plane.
- *I* the light intensity of the illumination.
- *S*(*x*, *y*) the samples response to the illumination.
- This is completely idealized. Question is: Where does it need to be more realistic?

Points S(x,y) on the sample plane are mapped to measurement M(x', y')on the image plane.

Resolution and point-spread functions

$$M(x, y) = \mathsf{PSF} * (I \cdot S(x, y))$$

- Diffraction limit: Point-like emitter is spread to a distribution. Bringing points closer together, they can no longer be distinguished.
- Described by the **point-spread function** (**PSF**). Optical systems fold the signal with their PSF when measuring.

OTFs and Fourier space

$$ilde{M}(k_x,k_y) = \mathsf{OTF}(k_x,k_y) \cdot \left(I ilde{S}(k_x,k_y)\right)$$

- The PSF in Fourier space is called Optical Transfer Function (OTF).
- Folding becomes multiplication in Fourier space.
- **OTF** directly links to resolution, chose any for a resolution limit:
 - OTF has regions where it is zero, thus projects to a subspace.
 - Light is quantized.
 - Relevant: Noise overlays the dampened high frequencies.

Fourier space for images

Base image: Wikipedia / Wikimedia: USAF-1951

œ 🛈 💿

Digression: Coherence and (destructive) interference

- Wave-nature of light gives the Abbe limit: Interference while traversing the optical system.
- Usual approach: Point source, obtain point-spread function, folding by PSF.
- Multiple point sources: There is a difference between coherent and incoherent emission: Destructive interference
- Equations thus far: Intensities add up, thus no interference.

Coherent or incoherent emission

This

 $M(x, y) = \mathsf{PSF} * (I \cdot S(x, y))$

implies adding up intensities. Or does it? Complex valued *I*, *S*, PSF...

- **Coherence**: Does the sample preserve the phase of incoming light?
- No problem for fluorescence, even with coherent (laser) illumination.
 Fluorescence lifetime in order of nanoseconds, destroys coherence.
- For other materials and processes, a closer look might be needed (e.g., stimulated coherent emission).

More detail: Ideal PSFs/OTFs and approximation

$$ilde{M}(k_x, k_y) = \mathsf{OTF}(k_x, k_y) \cdot \left(I ilde{S}(k_x, k_y) \right)$$

Ideal means a circular aperture in the Fourier plane, otherwise perfect optical system. Then:

$$PSF(x) = \frac{2J_1(x)^2}{x}$$
$$OTF(k) = \frac{2}{\pi} \left(\arccos(|k|) - |k| \sqrt{1 - k^2} \right)$$

Gaussian approximation not too bad for PSF, and Fourier transform gets much easier. But: Gaussian function does not fall off to zero!

Noise: Camera noise, photon shot noise

"Camera" noise

Noise/dark frame (left), full signal (middle), signal with darkframe substraction (right) 1

- Noise arises as the camera (mis)counts the number of photons. Thermal and quantum effects distort the number of photo-converted electrons.
- Thermal and quantum effects distort the amplification and conversion from electron charge to a digital value.
- **Cooling** helps with some of the thermal effects.
- Dark frame substration (below)
- "Better" electronics helps, see lecture on camera types and trade-offs (noise, speed, price).

¹Images provided by Christian Pilger

Photon shot noise

- Evenly fluorescent surface: *N* photons / sec.
- Fluorescence is random, i.e. emission probability distribution is constant
- For a finite measurement: not every point will receive the same amount of photons
- Poisson distribution: Noise scales with SNR = $\frac{N}{\sqrt{N}} = \sqrt{N}$
- This problem is fundamental: Only solution is to increase *N*, i.e. higher intensity
- Good cameras are limited by shot noise (not only for microscopy)

Fluorescent surface, evenly distributed fluorescence probability

Noise in Fourier space

Noise in spatial (left) and frequency (right) domain

$$M(x,y) = (\mathsf{PSF} * (I \cdot S(x,y))) + N(x,y)$$

- N(x, y) is random: Distribution influenced by various factors.
- Each pixels might be different, e.g. different average and variation.
- In first approximation there should be no correlation between pixels. Spectral distribution can be used to check.
- High-frequency filtering thus will eliminate some of it.
- Camera characteristics can be measured quite extensively.

Background

- Samples are often not flat, but somewhat thick.
- Image plane (photons stopped by camera chip) sets a fixed sample focal plane
- Pixels collect additional light from out-of-focus contributions

<u>. ()</u>

Background: Examples

Full Image

Background

Full Image - Background

Marcel, Wolfgang (Bielefeld)

Nanoscopy

SoSe 2015 16 / 21

Background: 3D PSF

$$M(x,y) = \int_{S_z} \mathsf{PSF}(z) * (I \cdot S(x,y,z)) \, \mathrm{d}z$$

- 3D PSF (and sample) to account for these contribution
- z-component generally harder to calculate, but can be measured and/or simulated.
- Important: Axial vs. lateral resolution and improvement

Sketch of 3D PSF

Background: Obtaining a PSF

OFF Generator Optical Model Lateral/Axial OTF Gloson & Lann 3D Optical Model Archards & Worl 3D Optical Model Variable Refractive Index Gibson & Lanni Born & Worl 3D Optical Model v
Gibson & Lanni Optical PSF Model This model describes the scalar-based diffraction that occurs in the microscope It accounts for the immersion the rower-silo and the sample layers
Refractive Index Immersion 1.5 n n Refractive Index Sample 1.33 n Working distance (t) 150 [mm Particle position Z 2,000 [mm]
Wavelength 610 ⁺ / ₂ nm NA 1.4 ⁺ / ₂ Pixelsize XY 125 ⁺ / ₂ nm Z-step 250 ⁺ / ₂ nm FWHM XY 255.8 nm FWHM Z 622.4 nm
Juse Ark 312m 512m 25bm Display Log 32-bits Grays V Run Stop Prefs Help About 857.7 ms - Executing GL Close

- Simulation: Software takes into account particle position, working distance, all refractive index changes between immersion medium, cover slip, sample.
- Measurement: Use single point-like emitters (reasonably smaller than resolution limit) and scan them through the focus.

Summary

What is background, what is noise

Noise is an uncertainty in measuring the number of photons on a pixel. **Background** are photons picked up from (usually out-of-focus) positions on the sample that are of no interest to the measurement.

In common

- Both add to the measurement.
- Both are not signal. Thats somewhat by definition, as in not the signal we are interested in.
- Sometimes low enough to ignore, sometimes so high the image is ruined.
- Some post-processing addresses both.

Differences

- Noise depend on
 - Intensity (photon shot-noise)
 - Camera quality
- Background depends on
 - the sample
 - the way it is illuminated
 - the way it is imaged
- Often, with M = I · S, increasing I keeps noise constant, while background scales with I. In these cases: More light improves SNR, but not SBR.

Summary: Background and Noise

$$M(x,y) = \underbrace{\int_{S_z} \mathsf{PSF}(z)}_{S_z} * (I \cdot S(x,y,z)) \, \mathrm{d}z + \underbrace{N(x,y)}_{V(x,y)}$$

Background

- Unwanted out-of-focus contributions
- Background scales with illumination intensity, thus SBR (signal-background-ratio) uninfluenced by more light
- Improvements: Illumination, Deconvolution, ...

Noise

- Measurement errors for camera photon count
- Noise is constant when illumination is increased, thus SNR (signal-noise-ratio) can be improved by more light
- Other improvements: Exposure time, camera type (with cost/speed/noise trade-off).