Quantum Mechanics: Exercises 9

Due to: January 8, 2013.

Problem 1

Prove the identity

$$
\begin{equation*}
(\boldsymbol{\sigma} \cdot \boldsymbol{A})(\boldsymbol{\sigma} \cdot \boldsymbol{B})=\boldsymbol{A} \cdot \boldsymbol{B}+i \boldsymbol{\sigma} \cdot(\boldsymbol{A} \times \boldsymbol{B}) \tag{1}
\end{equation*}
$$

where $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ and \boldsymbol{A} and \boldsymbol{B} are some vector operators which commute with σ but do not necessarily commute with each other.

Problem 2

Find expectation value of of J_{x} and standard deviation ΔJ_{x} in the state $|j, m\rangle$.

Problem 3

Using

$$
\begin{equation*}
\hat{J}_{z}|j, m\rangle=\hbar m|j, m\rangle \tag{2}
\end{equation*}
$$

show that for $j=1$ we have

$$
\hat{J}_{z}=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \tag{3}\\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

and derive expressions for $\hat{J}_{+}, \hat{J}_{-}, \hat{J}_{x}, \hat{J}_{y}$ and \hat{J}^{2} (correct answer is in the lecture note p. 77). Show that $\hat{J}_{x}^{2}, \hat{J}_{y}^{2}$ and \hat{J}_{z}^{2} are commutative.

