Quantum Mechanics: Exercises 9

Due to: January 8, 2013.

Problem 1

Prove the identity

$$(\boldsymbol{\sigma} \cdot \boldsymbol{A})(\boldsymbol{\sigma} \cdot \boldsymbol{B}) = \boldsymbol{A} \cdot \boldsymbol{B} + i \, \boldsymbol{\sigma} \cdot (\boldsymbol{A} \times \boldsymbol{B}), \tag{1}$$

where $\boldsymbol{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ and \boldsymbol{A} and \boldsymbol{B} are some vector operators which commute with $\boldsymbol{\sigma}$ but do not necessarily commute with each other.

Problem 2

Find expectation value of J_x and standard deviation ΔJ_x in the state $|j, m\rangle$.

Problem 3

Using

$$\hat{J}_z|j,m\rangle = \hbar m|j,m\rangle$$
 (2)

show that for j = 1 we have

$$\hat{J}_z = \hbar \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
(3)

and derive expressions for $\hat{J}_+, \hat{J}_-, \hat{J}_x, \hat{J}_y$ and \hat{J}^2 (correct answer is in the lecture note p. 77). Show that \hat{J}_x^2, \hat{J}_y^2 and \hat{J}_z^2 are commutative.