Quantum Mechanics: Exercises 6

Due to: December 4, 2012.

Problem 1

Consider spin of the electron in strong magnetic field $\mathbf{B}_{\mathbf{0}}$ in z-direction. Add some small magnetic field \mathbf{b} in x-direction. Calculate energy and corresponding eigenvectors of the system exactly and then up to second order in perturbation theory.

Hints:

a) Operator of energy of electron magnetic moment in external field is given by $H=\frac{e \hbar}{2 m} \boldsymbol{\sigma} \cdot \boldsymbol{B}$, where $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$

Problem 2

Consider unperturbed Hamiltonian H_{0}, which is time independent and some small time dependent perturbation $H^{\prime}(t)$. Assume that unperturbed problem is exactly solvable and eigenvalues are given by

$$
\begin{equation*}
H_{0}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle . \tag{1}
\end{equation*}
$$

Assuming

$$
\begin{equation*}
|\psi(t)\rangle=\sum_{n} c_{n}(t) e^{-i E_{n} t / \hbar}\left|\psi_{n}\right\rangle \tag{2}
\end{equation*}
$$

show that the Schrödinger equation is equivalent to

$$
\begin{equation*}
\frac{d c_{m}(t)}{d t}=\frac{1}{i \hbar} \sum_{n} H_{m n}^{\prime}(t) c_{n}(t) e^{i \omega_{m n} t} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{m n}^{\prime}(t)=\left\langle\psi_{m}\right| H^{\prime}(t)\left|\psi_{n}\right\rangle \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\omega_{m n}=\left(E_{m}-E_{n}\right) / \hbar \tag{5}
\end{equation*}
$$

. To first order in H^{\prime} solution of (3) is given by

$$
\begin{equation*}
c_{m}(t)=c_{m}\left(t_{0}\right)+\frac{1}{i \hbar} \sum_{n} \int_{t_{0}}^{t} d t^{\prime} H_{m n}^{\prime}\left(t^{\prime}\right) c_{n}\left(t_{0}\right) e^{i \omega_{m n} t^{\prime}} \tag{6}
\end{equation*}
$$

Problem 3

Linear harmonic oscillator is in the ground state and in time $t=-\infty$ we turn on a weak homogeneous electric field with intensity given by

$$
\begin{equation*}
E(t)=E_{0} e^{-\frac{t^{2}}{\tau^{2}}} \tag{7}
\end{equation*}
$$

Using results of previous problem calculate probability of finding LHO in the n-th excited state at time $t=\infty$ (i.e. calculate $P_{n}=\left|c_{n}\right|^{2}$).

