Quantum Mechanics: Exercises 4

Due to: November 20, 2012.

Problem 1

a) Show that the commutation relation for momentum and position

$$
\begin{equation*}
[X, P]=i \hbar \tag{1}
\end{equation*}
$$

cannot be satisfied for any finite-dimensional matrices X and P.
b) Show that it is possible for infinite-dimensional matrices, for example

$$
X=\sqrt{\frac{\hbar}{2 m \omega}}\left(\begin{array}{cccc}
0 & \sqrt{1} & 0 & \ldots \tag{2}\\
\sqrt{1} & 0 & \sqrt{2} & \ldots \\
0 & \sqrt{2} & 0 & \ldots \\
\cdots & \cdots & \ldots & \ldots
\end{array}\right) \quad P=\sqrt{\frac{\hbar m \omega}{2}}\left(\begin{array}{cccc}
0 & -i \sqrt{1} & 0 & \cdots \\
i \sqrt{1} & 0 & -i \sqrt{2} & \cdots \\
0 & i \sqrt{2} & 0 & \cdots \\
\cdots & \cdots & \cdots & \cdots
\end{array}\right)
$$

Problem 2

Show that matrices for the position and momentum operators, X and P , in the basis formed by the energy eigenvectors of the harmonic oscillator are given by the matrices in Problem 1.

Problem 3

Find an expression for the expectation value of x^{4}, in the n-th excited state of the harmonic oscillator.

Problem 4

In case of harmonic oscillator show that so-called virial theorem holds, i.e. $\langle T\rangle=\langle V\rangle=E / 2$, where T is kinetic energy, V is potential energy and E is total energy.

