Quantum Mechanics: Exercises 2

Due to: November 6, 2012.

Problem 1

Show that a commutator of two Hermitian operators is anti-Hermitian, that is, it satisfies $\hat{A}^{\dagger}=-\hat{A}$.

Problem 2

Prove that

$$
\begin{equation*}
e^{\hat{A}+\hat{B}}=e^{\hat{A}} e^{\hat{B}} e^{-\frac{1}{2}[\hat{A}, \hat{B}]}, \tag{1}
\end{equation*}
$$

provided the operators \hat{A} and \hat{B} satisfy $[\hat{A},[\hat{A}, \hat{B}]]=[\hat{B},[\hat{A}, \hat{B}]]=0$.

Problem 3

One-dimensional Gaussian wawe packet function is given by

$$
\begin{equation*}
\psi(x)=\frac{1}{\pi^{\frac{1}{4}} \sqrt{d}} \exp \left[i k x-\frac{x^{2}}{2 d^{2}}\right] \tag{2}
\end{equation*}
$$

a) calculate expectation values of operators \hat{x} and \hat{x}^{2}.
b) Take operator

$$
\begin{equation*}
\hat{p}=-i \hbar \frac{d}{d x}, \tag{3}
\end{equation*}
$$

and find expectation values of operators \hat{p} and \hat{p}^{2}.
c) find dispersions σ_{x} and σ_{p}, where dispersion is defined as

$$
\begin{equation*}
\sigma_{A}^{2}=\left\langle(\triangle A)^{2}\right\rangle=\left\langle A^{2}\right\rangle-\langle A\rangle^{2} \tag{4}
\end{equation*}
$$

c) What is the value of the uncertainty product $\sigma_{x}^{2} \sigma_{p}^{2}$ in this case?

