Quantum Mechanics: Exercises 1

Due to: October 30, 2012.

Problem 1

Show that any 2 x 2 matrix can be expressed as a combination of the I_{2} (2 x 2 unity matrix) and so-called Pauli matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Prove their commutation and anti-commutation relations:

$$
\begin{align*}
{\left[\sigma_{i}, \sigma_{j}\right] } & =2 i \epsilon_{i j k} \sigma_{k}, \tag{2}\\
\left\{\sigma_{i}, \sigma_{j}\right\} & =2 \delta_{i j} \cdot I_{2}, \tag{3}
\end{align*}
$$

where $\epsilon_{i j k}$ is the Levi-Civita symbol.

Problem 2

Operator is said to be Hermitian if for its matrix elements holds that $M_{i j}=M_{j i}^{*}$. Show then that matrix

$$
M=\left(\begin{array}{ll}
1 & 1 \tag{4}\\
0 & 1
\end{array}\right)
$$

a) is non-Hermitian.
b) it has real eigenvalues, but its eigenvectors do not form complete set.
c) find a vector $|v\rangle$ such that $\langle v| M|v\rangle$ is complex.
d) Why non-Hermitian operators cannot represent physical observables?

Problem 3

With knowledge that polarization states of electrons can be represented by

$$
\begin{equation*}
|x \pm\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm 1}, \quad|y \pm\rangle=\frac{1}{\sqrt{2}}\binom{1}{ \pm i}, \quad|z \pm\rangle=\binom{1}{0},\binom{0}{1} \tag{5}
\end{equation*}
$$

prove that matrix elements of the operator $\hat{\mu}_{i}$ are given by

$$
\begin{equation*}
\hat{\mu}_{i}=\mu_{0} \sigma_{i}, \tag{6}
\end{equation*}
$$

where μ_{0} is some constant and σ_{i} are Pauli matrices.

Problem 4

Prove that

$$
\begin{equation*}
[A B, C D]=-A C\{D, B\}+A\{C, B\} D-C\{D, A\} B+\{C, A\} D B . \tag{7}
\end{equation*}
$$

