Übung Nr.2

5. Konservative Kraftfelder (1)

- i. Erklären Sie den Unterschied zwischen den Kraftfeldern $\vec{F}(\vec{r}) = f(\vec{r})\vec{r}$ und $\vec{F}(\vec{r}) = f(r)\vec{r}$.
- ii. Beweisen Sie, dass das Kraftfeld $\vec{F}(\vec{r}) = f(r)\vec{r}$ konservativ ist.
- iii. Berechnen Sie das Potential für $f(r) = -\alpha r^2$. Im Koordinatenursprung soll das Potential null sein.

6. Konservative Kraftfelder (2)

i. Ist das folgende für $r \neq 0$ definierte (in Kugelkoordinaten gegebene) Kraftfeld konservativ? Geben Sie ggf. ein Potential an (μ ist eine Konstante).

$$\vec{F}(\vec{r}) = \frac{e^{-\mu r}}{r^2} (1 + \mu r) \vec{e}_r. \tag{1}$$

ii. Ist das folgende außer auf der z-Achse definierte Kraftfeld konservativ? Geben Sie ggf. ein Potential an. (Hinweis: Betrachten Sie die Arbeit entlang eines Weges, der die z-Achse umschließt.)

$$\vec{F}(\vec{r}) = \frac{1}{x^2 + y^2} \begin{pmatrix} y \\ -x \\ 0 \end{pmatrix}. \tag{2}$$

iii. \vec{a} , \vec{b} seien konstante Vektoren. Welche Bedingungen müssen diese erfüllen, damit das Kraftfeld $\vec{F}(\vec{r}) = (\vec{a} \cdot \vec{r})\vec{b}$ konservativ ist?

7. Nabla-Operator

Berechnen Sie $\vec{\nabla}r$, $\vec{\nabla}\cdot\vec{r}$ und $\vec{\nabla}\times\vec{r}$.

8. Gedämpfter harmonischer Oszillator

Die Bewegungsgleichung für einen gedämpften 1-dimensionalen harmonischen Oszillator lautet

$$m\ddot{x} + \alpha_{\rm B}\dot{x} + m\Omega^2 x = 0.$$

- i. Lösen Sie diese für vorgegebene Anfangswerte x_0 und v_0 für x und \dot{x} zur Zeit t=0.
- ii. Diskutieren Sie die beiden Fälle $\alpha_{\rm R}/2m < \Omega$ (Schwingfall) und $\alpha_{\rm R}/2m > \Omega$ (Kriechfall). Skizzieren Sie für jeden dieser Fälle eine typische Trajektorie x(t).
- iii. Wie lautet die Lösung im Grenzfall $\alpha_R/2m \to \Omega$? (Hinweis: Drücken Sie zunächst die Lösung für den Schwingfall durch Cosinus- und Sinus-Funktionen aus, und betrachten Sie dann diesen Grenzfall.)

*9. Eindimensionale Bewegung mit Reibungskraft

(Eine Lösung zu dieser Aufgabe wird am 25.10 auf die Webseite der Vorlesung hochgeladen.)

Ein Körper bewege sich in einer Dimension unter dem Einfluss der Reibungskraft $F_{\rm R}(v)$ nach folgender Bewegungsgleichung

$$m\dot{v} = F_{\rm R}(v), \quad v \ge 0. \tag{3}$$

Die Reibungskraft $F_{\rm R}(v)$ ist durch zwei positive Parameter charakterisiert, die Haftreibung H und den

Reibungskoeffizienten γ ; sie hat die Form

$$F_{\rm R}(v) = -H \left[1 + \left(\frac{\gamma v}{H} \right)^n \right]^{1/n}. \tag{4}$$

Die Frage ii) ist unabhängig von i).

i. Verhalten der Reibungskraft

- a) Bestimmen Sie den Grenzwert von $F_{\rm R}(v)$ für $v \to 0$ sowie das asymptotische Verhalten für $v \to \infty$.
- b) Wie verhält sich die Reibungskraft für $n \to \infty$?
- c) Skizzieren Sie den Verlauf von $F_{\rm R}(v)$ für n=2 und $n\to\infty$.
- ii. Im weiteren sei n=2.
- a) Geben Sie die Lösung v(t) der Bewegungsgleichung (3). Trennen Sie dazu die Variablen und verwenden Sie Hyperbelfunktionen.

Machen Sie sich vorher die Eigenschaften der Hyperbelfunktionen klar. Zeigen bzw. ermitteln Sie:

$$\cosh^2(x) - \sinh^2(x) = 1 \tag{5}$$

$$\sinh(x+y) = ? \qquad , \qquad \cosh(x+y) = ? \tag{6}$$

$$\sinh(x+y) = ? \qquad , \qquad \cosh(x+y) = ? \tag{6}$$

$$\sinh'(x) = ? \qquad , \qquad \cosh'(x) = ? \tag{7}$$

$$\operatorname{arsinh}'(x) = ?$$
 , $\operatorname{arcosh}'(x) = ?$ (8)

Stellen Sie die Umkehrfunktionen mittels des natürlichen Logarithmus ln dar.

- b) Bestimmen Sie die Stoppzeit und stellen Sie diese als Funktion der Anfangsgeschwindigkeit graphisch
- c) Bestimmen Sie die Wegstrecke, auf der ein Körper mit der Anfangsgeschwindigkeit v_0 zum Stehen kommt.

¹Zur Erinnerung(?) gelten $\cosh x \equiv \frac{e^x + e^{-x}}{2}$, $\sinh x \equiv \frac{e^x - e^{-x}}{2}$.