Übung Nr. 2

4. Differentielle Form des Thomsonschen Satzes

i. Zeigen Sie, dass in einem idealen Fluid die Wirbligkeit $\vec{\omega}(t, \vec{r})$ der Gleichung

$$\frac{\partial \vec{\omega}}{\partial t} = \vec{\nabla} \times (\vec{v} \times \vec{\omega})$$

genügt.

ii. Ein stationärer "Wirbel" sei eine Strömung der Form $\vec{\omega} = A \, \delta(x_1) \, \delta(x_2) \, \vec{e}_3$ mit A einer Konstante. Bestimmen Sie die entsprechende Strömungsgeschwindigkeit \vec{v} .

Hinweis: Benutzen Sie Symmetrieargumente und den Stokes'schen Satz.

iii. Wir betrachten jetzt ein inkompressibles Fluid mit nichtverschwindender Scherviskosität η und verschwindender Dehnviskosität, wobei die Navier–Stokes-Gleichung die Form

$$\rho \left[\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \vec{\nabla}) \vec{v} \right] = -\vec{\nabla} p + \eta \triangle \vec{v}$$

annimmt. Wie benimmt sich die Wirbligkeit als Funktion der Zeit in diesem Fall?

Hinweis: Identifizieren Sie einen "diffusiven Teil" in der Bewegungsgleichung und erinnern Sie sich an die allgemeinen Eigenschaften diffusiver Bewegung.

5. Rotierende Flüssigkeit im Schwerefeld

Berechnen Sie die Form der freien Oberfläche einer inkompressiblen idealen Flüssigkeit in einem zylindrischen senkrechten Gefäß im Schwerefeld, der sich mit der konstanten Winkelgeschwindigkeit $\vec{\Omega} = \Omega \, \vec{e}_3$ um die eigene Achse dreht. Es wird angenommen, dass die Flüssigkeit mit der gleichen Winkelgeschwindigkeit mitrotiert.

Hinweis: Landau-Lifschitz, Hydrodynamik §10.

6. Isentropische Strömung

Sei s bzw. n die Entropie- bzw. Teilchendichte, und u^{μ} die Strömungsgeschwindigkeit. Wir definieren die Entropie pro Teilchen durch $\sigma \equiv s/n = S/N$. Zeigen Sie, dass in einer isentropischen Strömung $[\partial_{\mu}(su^{\mu}) = 0]$ die Entropie pro Teilchen erhalten bleibt, d.h. $d\sigma/dt = 0$.