Übungsblatt Nr.3a (Hausübungen)

Diskussionsthemen:

- Was sind Galilei-Transformationen?
- Was sind Scheinkräfte? Welche kennen Sie?

*12. Gedämpfter harmonischer Oszillator [10 Punkte]

Die Bewegungsgleichung für einen gedämpften 1-dimensionalen harmonischen Oszillator lautet

$$m\ddot{x} + \alpha_{\rm R}\dot{x} + m\Omega^2 x = 0.$$

- i. Lösen Sie diese für vorgegebene Anfangswerte x_0 und v_0 für x und \dot{x} zur Zeit t=0.
- ii. Diskutieren Sie die beiden Fälle $\alpha_R/2m < \Omega$ (Schwingfall) und $\alpha_R/2m > \Omega$ (Kriechfall). Skizzieren Sie für jeden dieser Fälle eine typische Trajektorie x(t).
- iii. Wie lautet die Lösung im Grenzfall $\alpha_R/2m \to \Omega$? (Hinweis: Drücken Sie zunächst die Lösung für den Schwingfall durch Cosinus- und Sinus-Funktionen aus, und betrachten Sie dann diesen Grenzfall.)

*13. Allgemeine Galilei-Transformationen [10 Punkte]

Eine allgemeine Galilei-Transformation $\mathcal{G}(\tau, \vec{b}, \mathcal{R}, \vec{u})$ zwischen zwei Inertialsystemen lautet

$$t' = t - \tau, \qquad \vec{r}' = \mathcal{R}(\vec{r} - \vec{u}t - \vec{b}), \tag{1}$$

wobei die Zeitverschiebung τ , die Verschiebung \vec{b} , die Drehmatrix \mathscr{R} und die Relativgeschwindigkeit \vec{u} konstant sind.

Betrachten Sie zwei Galilei-Transformationen $\mathcal{G}(\tau, \vec{b}, \mathcal{R}, \vec{u})$ und $\mathcal{G}(\tau', \vec{b}', \mathcal{R}', \vec{u}')$. Berechnen Sie die Transformation, die sich ergibt, wenn beide hintereinander ausgeführt werden. Folgern Sie daraus die Inverse einer allgemeinen Galilei-Transformation.

14. Eindimensionale Bewegung mit Reibungskraft

Ein Körper bewege sich in einer Dimension unter dem Einfluss der Reibungskraft $F_{\rm R}(v)$ nach folgender Bewegungsgleichung

$$m\dot{v} = F_{\rm R}(v), \quad v \ge 0. \tag{2}$$

Die Reibungskraft $F_{\rm R}(v)$ ist durch zwei positive Parameter charakterisiert, die Haftreibung H und den Reibungskoeffizienten γ ; sie hat die Form

$$F_{\rm R}(v) = -H\sqrt{1 + \left(\frac{\gamma v}{H}\right)^2}.$$
 (3)

Geben Sie die Lösung v(t) der Bewegungsgleichung (2). Trennen Sie dazu die Variablen und verwenden Sie Hyperbelfunktionen.

Machen Sie sich vorher die Eigenschaften der Hyperbelfunktionen klar. Zeigen bzw. ermitteln Sie:

$$\cosh^2(x) - \sinh^2(x) = 1 \tag{4}$$

$$\sinh(x+y) = ? \qquad , \qquad \cosh(x+y) = ? \tag{5}$$

$$\sinh'(x) = ? \qquad , \qquad \cosh'(x) = ? \tag{6}$$

$$\sinh'(x) = ? \qquad , \qquad \cosh'(x) = ? \tag{6}$$

$$\operatorname{arsinh}'(x) = ?$$
 , $\operatorname{arcosh}'(x) = ?$ (7)

¹Zur Erinnerung(?) gelten $\cosh x \equiv \frac{e^x + e^{-x}}{2}$, $\sinh x \equiv \frac{e^x - e^{-x}}{2}$.

Stellen Sie die Umkehrfunktionen mittels des natürlichen Logarithmus ln dar.

- ii. Bestimmen Sie die Stoppzeit und stellen Sie diese als Funktion der Anfangsgeschwindigkeit graphisch dar.
- i
ii. Bestimmen Sie die Wegstrecke, auf der ein Körper mit der Anfangsgeschwindigkeit
 v_0 zum Stehen kommt.