Übungsblatt Nr.14b (Präsenzübungen)

85. Elektrisches Feld aus Strömen

Die stationären elektrischen Felder $\vec{E}(\vec{r})$ der Elektrostatik sind verursacht durch statische Ladungsverteilungen $\rho_{\rm el.}(\vec{r})$. Sie werden in dieser Übung zeigen, dass es auch möglich ist, ein zeitunabhängiges elektrisches Feld durch eine geeignete Stromverteilung $\vec{\jmath}_{\rm el.}$ in Abwesenheit einer Ladungsverteilung zu erzeugen.

- i. Sei $\vec{j}_{\text{el.,0}}(\vec{r})$ eine stationäre Stromdichte und $\vec{B}_0(\vec{r})$ die entsprechende magnetische Induktion, wobei $\rho_{\text{el.,0}}(\vec{r}) = 0$ und somit $\vec{E}_0(\vec{r}) = \vec{0}$. Eine zeitabhängige Stromverteilung sei durch $\vec{j}_{\text{el.}}(t,\vec{r}) \equiv \vec{j}_{\text{el.,0}}(\vec{r}) t/\tau$ beschrieben, wobei τ eine Konstante ist.
- a) Zeigen Sie, dass das elektromagnetische Feld bestehend aus $\vec{B}(t,\vec{r}) \equiv \vec{B}_0(\vec{r})\,t/\tau$ und einem zu bestimmenden stationären elektrischen Feld $\vec{E}(\vec{r})$ die Maxwell-Gleichungen mit Quellen $\rho_{\rm el.}(t,\vec{r}) = 0$ und $\vec{\jmath}_{\rm el.}(t,\vec{r})$ erfüllt.

Hinweis: Vergessen Sie nicht, dass $\vec{B}_0(\vec{r})$ und $\vec{\jmath}_{\text{el.},0}(\vec{r})$ den stationären Maxwell-Gleichungen genügen.

- b) Wodurch unterscheidet sich das gefundene Feld $\vec{E}(\vec{r})$ von einem elektrostatischen Feld (erzeugt durch eine statische Ladungsverteilung)?
- ii. Zeigen Sie, dass das Feld $\vec{E}(\vec{r})$ die gleiche Struktur hat wie das stationäre magnetische Feld $\vec{B}_1(\vec{r})$ erzeugt durch eine zu bestimmende zeitunabhängige Stromverteilung $\vec{\jmath}_{\text{el.,1}}(\vec{r})$, die sich durch \vec{B}_0 und τ ausdrücken lässt.

86. Laplace-Operator in Kugelkoordinaten

Sei $f(\vec{r})$ eine Funktion des Ortsvektors in \mathbb{R}^3 . In kartesischen Koordinaten ist der Ausdruck des Laplace-Operators $\triangle f(x,y,z)$ Ihnen wohlbekannt. In Kugelkoordinaten (r,θ,φ) mit $r \equiv |\vec{r}|$ gilt

$$\triangle f(r,\theta,\varphi) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2}, \tag{1}$$

wobei die (r, θ, φ) -Abhängigkeit der partiellen Ableitungen nicht geschrieben wurde.

i. Prüfen Sie, dass der erste Term auf der rechten Seite der Gl. (1) in den drei äquivalenten Formen

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right) = \frac{\partial^2 f}{\partial r^2} + \frac{2}{r}\frac{\partial f}{\partial r} = \frac{1}{r}\frac{\partial^2}{\partial r^2}(rf),\tag{2}$$

geschrieben werden kann.

- ii. Sei $f(r, \theta, \varphi) = r^2(1 + 3\cos^2\theta) r\sin\theta(\cos\varphi \sin\varphi)$.
- a) Berechnen Sie $\triangle f(r, \theta, \varphi)$ anhand der Formel (1).
- **b)** Drücken Sie f durch kartesische Koordinaten (x, y, z) aus und berechnen Sie $\triangle f(x, y, z)$. Drücken Sie Ihr Resultat in Kugelkoordinaten aus und vergleichen Sie mit dem Ergebnis aus **ii.a**).