Übungsblatt Nr.13a (Hausübungen)

Diskussionsthemen:

- Was sind die Grundgleichungen der Magnetostatik? das Biot-Savart-Gesetz?
- Wie ist das Vektorpotential definiert? Ist die Definition eindeutig?

*77. Gaußsches Gesetz in der newtonschen Gravitationstheorie [12 Punkte]

Die newtonsche Gravitationskraft zwischen zwei Punktmassen m_1 , m_2 hat die gleiche mathematische Form wie die Coulomb-Kraft zwischen zwei statischen elektrischen Punktladungen q_1 , q_2 :

$$\vec{F}_{\text{Newton}} = -\frac{G_N m_1 m_2}{r^2} \frac{\vec{r}}{r} \quad \text{bzw.} \quad \vec{F}_{\text{Coulomb}} = \frac{q_1 q_2}{4\pi \epsilon_0 r^2} \frac{\vec{r}}{r}$$
 (1)

mit $\vec{r} \equiv \vec{r}_2 - \vec{r}_1$ und $r \equiv |\vec{r}|$. Diese Analogie kann benutzt werden, um Probleme in der newtonschen Gravitationstheorie zu lösen.

Das newtonsche Gravitationsfeld $\vec{\mathcal{G}}$ sei so definiert, dass die resultierende Kraft auf eine Punktmasse m durch $m\vec{\mathcal{G}}$ gegeben ist.

- i. Berechnen Sie den Fluss des von einer Punktmasse M herrührenden Gravitationsfeldes durch eine Kugelfläche, deren Zentrum bei der Punktmasse liegt.
- ii. Sei $\vec{\mathcal{G}}(\vec{r})$ das durch eine Massenverteilung $\rho(\vec{r})$ erzeugte Gravitationsfeld. "Folgern" Sie aus dem Ergebnis aus i.a (und aus Ihren Kenntnissen in der Elektrostatik!) eine plausible Beziehung zwischen der Divergenz von $\vec{\mathcal{G}}$ und ρ .
- iii. Das newtonsche Gravitationsfeld kann offensichtlich (warum?) aus einem Potential $\Phi_{\rm G}$ abgeleitet werden: $\vec{\mathcal{G}}(\vec{r}) = -\vec{\nabla}\Phi_{\rm G}(\vec{r})$. Welcher bekannten Gleichung genügt das von einer Massenverteilung $\rho(\vec{r})$ herrührende Potential und wie lautet die Lösung dieser Gleichung für eine endlich ausgedehnte Verteilung?

*78. Magnetfeld einer idealen Zylinderspule [8 Punkte]

In der Vorlesung wurde das Magnetfeld einer Leiterschleife auf der Achse der Schleife berechnet. Eine Zylinderspule (Länge ℓ , Radius R) sei als eine Reihenfolge von N kreisförmigen Leiterschleifen mit Radius R modelliert, die alle durch die Stromstärke I durchflossen sind. Die x-Achse liegt entlang der Symmetrieachse der Zylinderspule, mit x=0 in der Mitte der Spule.

- i. Bestimmen Sie das Magnetfeld \vec{B} in einem Punkt auf der x-Achse innerhalb der Spule.
- ii. Zeigen Sie anhand einer Taylor-Entwicklung, dass das Ergebnis aus i. im Limes $\ell\gg R$ zu

$$|\vec{B}| = \frac{\mu_0 NI}{\ell} \tag{2}$$

führt, unabhängig vom Radius R und von der Position x auf der Achse der Spule.

79. Helmholtz-Spule

Zwei parallele kreisförmige Leiterschleifen werden beide vom gleichen elektrischen Strom I in gleicher Richtung durchflossen. Die Kreise liegen parallel zur (x, y)-Ebene, sie haben beide den Radius R und ihre Mittelpunkte liegen bei (x, y, z) = (0, 0, d) und (0, 0, -d). Welche Beziehung muss zwischen dem Radius R und dem Abstand $D \equiv 2d$ der Kreise gelten, damit das Magnetfeld in der Nähe des Koordinatenursprungs möglichst wenig variiert?