Übung Nr. 4

Diskussionsthema:

- Welche relativistischen Wellengleichungen kennen Sie?
- Zweite Quantisierung bei Spin-1- und Spin-½-Teilchen.

In diesem Zettel werden natürliche Einheiten verwendet.

Aufgabe 11. Ebene elektromagnetische Welle

Eine linear polarisierte ebene Welle ist definitionsgemäß eine Lösung der Maxwell-Gleichungen im Vakuum der Form

$$A^{\mu}(\mathsf{x}) = \varepsilon^{\mu} f(n_{\nu} x^{\nu}),\tag{1}$$

mit x-unabhängigen Vierervektoren ε^{μ} , n^{μ} und einer skalaren Funktion f. Dieser Ausdruck von $A^{\mu}(x)$ ist Lorentz-kovariant.

- i. Wie lautet der Feldstärketensor $F^{\mu\nu}(x)$?
- ii. Überprüfen Sie, dass die Transformation $\varepsilon^{\mu} \to \varepsilon^{\mu} + \lambda n^{\mu}$ mit beliebigem $\lambda \in \mathbb{R}$ eine Eichtransformation ist.
- iii. Geben Sie den Ausdruck der Maxwell-Gleichungen im Vakuum an. Zeigen Sie, dass die Lösungen der Form (1) für $n_{\mu}n^{\mu} \neq 0$ sogenannte "reine Eichungen" sind, d.h. sie können durch eine Eichtransformation in $A^{\mu}(x) = 0$ wegtransformiert werden.
- iv. Sei nunmehr $n_{\mu}n^{\mu}=0$. Zeigen Sie, dass das Viererpotential (1) der Lorenz-Eichbedingung automatisch genügt, obwohl die Eichung noch nicht fixiert wurde.
- v. Zeigen Sie, dass $\varepsilon_{\mu}\varepsilon^{\mu} < 0$ für ein Feld gilt, das keine reine Eichung ist. Folglich kann man ohne Beschränkung der Allgemeinheit $\epsilon_{\mu}\epsilon^{\mu} = -1$ ansetzen.
- vi. Zeigen Sie, dass es möglich ist, durch eine Eichtransformation $\epsilon^0=0$ anzusetzen. Welcher Eichung entspricht diese (nicht relativistisch kovariante) Bedingung? Zeigen Sie, dass n^0 zu 1 normiert werden kann und überprüfen Sie, dass man die bekannte Form von $\phi(t, \vec{x})$ und $\vec{A}(t, \vec{x})$ für eine transversal polarisierte ebene Welle erhält.

Aufgabe 12. Dirac-Matrizen

- i. Zeigen Sie ausgehend von $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}$, dass die Spur Tr $\gamma^{\mu} = 0$ ist.
- ii. Zeigen Sie ausgehend von der Dirac-Darstellung der γ^{μ} , dass $(\gamma^{\mu})^{\dagger} = \gamma^{0} \gamma^{\mu} \gamma^{0}$ gilt. Was bedeutet das Ergebnis für die Hermitizität der Dirac-Matrizen?
- iii. Definieren wir nun $\gamma_5 \equiv \gamma^5 \equiv i \gamma^0 \gamma^1 \gamma^2 \gamma^3$. Geben Sie den Ausdruck von γ_5 in der Standard-Darstellung an. Zeigen Sie die Eigenschaften
- a) $\{\gamma^{\mu}, \gamma_5\} = 0$; b) $(\gamma_5)^2 = \mathbb{1}_4$; c) $\gamma_5^{\dagger} = \gamma_5$; d) $\operatorname{Tr} \gamma_5 = 0$.

Aufgabe 13. Dirac-Gleichung

- i. Zeigen Sie, dass der Dirac-adjungierte Spinor $\bar{\psi} \equiv \psi^{\dagger} \gamma^{0}$ die Gleichung $\bar{\psi}(x) \left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu} + m \right) = 0$ erfüllt, wobei der Pfeil nach links bedeutet, dass die Ableitungen hier nach links wirken.
- ii. Zeigen Sie, dass $\int \bar{\psi}({\sf x}) \gamma^0 \psi({\sf x}) \, {\rm d}^3 \vec{x}$ eine Erhaltungsgröße ist.