Übung Nr. 13

Diskussionsthemen:

- Warum wurde die Existenz der schwachen Vektorbosonen vorgeschlagen?
- Standardmodell: Grundlagen (Symmetriegruppen, Bausteine)

Aufgabe 50. GIM-Mechanismus

Betrachten Sie den Zerfall $K^0 \to \mu^+ + \mu^-$, wobei $K^0 = d\bar{s}$. Dieser Prozess verlangt eine Umwandlung $d \to u \to s$ oder $d \to c \to s$, so dass sich s und \bar{s} gegenseitig vernichten können, um am Ende nur Leptonen zu haben. (Der Einfachheit halber dürfen Sie annehmen, dass nur die ersten zwei Generationen eine Rolle spielen.)

Zeigen Sie, ausgehend vom V-A-Modell, dass sich die zwei genannten Kanäle gegeneinander kürzen. Diese Tatsache wird als "GIM-Mechanismus" bekannt, wobei GIM für Glashow–Iliopoulos–Maiani steht.

Warum ist die Kürzung in der Natur allerdings nicht exakt?

Aufgabe 51. Schwache Feinstrukturkonstante

Welchen Wert erhalten Sie für die schwache Feinstrukturkonstante $\alpha_w \equiv g_w^2/(4\pi)$, wobei g_w mit der Fermi-Kopplungskonstanten und der Masse des W-Bosons über $g_w^2 = 4\sqrt{2} \, m_W^2 G_F$ verknüpft ist? Vergleichen Sie diesen Wert mit $\alpha_{\rm em}$ und α_s . Warum sind schwache Wechselwirkungen eigentlich "schwach"?

Aufgabe 52. U(1)-Eichtransformation eines Skalarfeldes

Sei $\hat{\phi}$ der skalare Feldoperator für ein elektrisch geladenes Teilchen mit Spin 0. Zeigen Sie, dass $\hat{\mathcal{L}} \equiv (\hat{D}_{\mu}\hat{\phi})^{\dagger} (\hat{D}^{\mu}\hat{\phi})$ mit $\hat{D}_{\mu} \equiv \partial_{\mu} + iQe\hat{A}_{\mu}$ invariant ist unter den Eichtransformationen

$$\begin{split} \hat{\phi}(\mathsf{x}) &\to \hat{\phi}'(\mathsf{x}) = \mathrm{e}^{-\mathrm{i}Q\lambda(\mathsf{x})}\,\hat{\phi}(\mathsf{x}) \\ \hat{A}_{\mu}(\mathsf{x}) &\to \hat{A}'_{\mu}(\mathsf{x}) = \hat{A}_{\mu}(\mathsf{x}) + \frac{1}{e}\partial_{\mu}\lambda(\mathsf{x}). \end{split}$$

Aufgabe 53. $U(1)_Y$ -Eichtransformationen

Die Felder $\{\hat{Q}'_{1,L}, \hat{\psi}_{u,R}, \hat{\psi}_{d,R}, \hat{\Phi}\}$ haben jeweils die Hyperladungen $Y = \{\frac{1}{6}, \frac{2}{3}, -\frac{1}{3}, \frac{1}{2}\}$.

Zeigen Sie, dass sowohl $\hat{Q}'_{1,L}$ $\hat{\Phi}$ $\hat{\psi}_{u,R}$ als auch $\hat{Q}'_{1,L}$ $\hat{\Phi}$ $\hat{\psi}_{d,R}$ invariant bezüglich der Eichsymmetrie $U(1)_Y$ sind.

Hinweis: Die Transformationen der Felder finden Sie in Aufgaben 48. und 52.

... und für die Studierenden, die MMP besucht haben...

Aufgabe 54. Tadpole-Integral

Betrachten Sie das Integral

$$A(m,\Lambda) \equiv \int_{|\vec{k}| < \Lambda} \frac{\mathrm{d}^3 \vec{k}}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} \, \frac{1}{\mathsf{k}^2 - m^2 + \mathrm{i}\varepsilon},$$

wobei $k^2 = k_0^2 - \vec{k}^2$ und $\varepsilon = 0^+$ ein infinitesimal kleiner positiver Parameter ist. Wie verhält sich $A(m,\Lambda)$ für $\Lambda \gg m$?

Hinweis: Das k_0 -Integral lässt sich am einfachsten mit dem Residuensatz berechnen.