Übung Nr. 13

Diskussionsthema: Symmetrieverletzungen der schwachen Wechselwirkung

Aufgabe 46. Pion-Nukleon-Streuung

Betrachten Sie die elastische Pion-Nukleon-Streuung. Es gibt sechs mögliche Prozesse:

$$\pi^{+} + p \to \pi^{+} + p, \quad \pi^{0} + p \to \pi^{0} + p, \quad \pi^{-} + p \to \pi^{-} + p,$$
 $\pi^{+} + n \to \pi^{+} + n, \quad \pi^{0} + n \to \pi^{0} + n, \quad \pi^{-} + n \to \pi^{-} + n.$

Wie viele unabhängige Amplituden gibt es in diesen Streuprozessen unter der Annahme der exakten Isospinsymmetrie? (Pionen haben I=1, Nukleonen $I=\frac{1}{2}$).

Aufgabe 47. CP-Eigenzustände

Für die zu den zwei neutralen Kaonen $K^0=d\bar{s}$ und $\bar{K}^0=s\bar{d}$ gehörigen Zustände gelten die Beziehungen

$$\begin{split} \hat{P} \, | K^0 \rangle &= - \, | K^0 \rangle, \quad \hat{P} \, | \bar{K}^0 \rangle = - \, | \bar{K}^0 \rangle, \\ \hat{C} \, | K^0 \rangle &= \, | \bar{K}^0 \rangle, \qquad \hat{C} \, | \bar{K}^0 \rangle = \, | K^0 \rangle. \end{split}$$

- i. Können Sie durch Linearkombinationen von $|K^0\rangle$ und $|\bar{K}^0\rangle$ $\hat{C}\hat{P}$ -Eigenzustände konstruieren?
- ii. Welcher dieser Zustände könnte in zwei, welcher in drei Pionen zerfallen, falls CP erhalten bleibt?
- iii. Warum können diese Reaktionen nicht innerhalb der QCD auftreten?

Aufgabe 48. Pion-Zerfall

Nehmen Sie an, dass die Elektronmasse m_e gleich null ist. Warum kann der Zerfall $\pi^- \to e^- + \bar{\nu}_e$ dann nicht stattfinden?

Dies ist eine Erklärung dafür, dass der Zerfall $\pi^- \to \mu^- + \bar{\nu}_{\mu}$ ($\Gamma_i/\Gamma = 99,99\%$) sehr viel häufiger als $\pi^- \to e^- + \bar{\nu}_e$ ($\Gamma_i/\Gamma = 0,01\%$) auftritt.

Aufgabe 49. Links- und rechtshändige Spinoren

Seien
$$\mathcal{P}_{L} \equiv \frac{\mathbb{1}_{4} - \gamma_{5}}{2}$$
 und $\mathcal{P}_{R} \equiv \frac{\mathbb{1}_{4} + \gamma_{5}}{2}$. Zeigen Sie, dass

- i. $\bar{\psi}_1 \gamma^{\mu} \mathcal{P}_L \psi_2 = \bar{\psi}_1 \mathcal{P}_R \gamma^{\mu} \mathcal{P}_L \psi_2;$
- ii. $\bar{\psi}_1 \mathcal{P}_{\mathrm{R}} \gamma^{\mu} \mathcal{P}_{\mathrm{L}} \psi_2 = \bar{\psi}_{1\mathrm{L}} \gamma^{\mu} \psi_{2\mathrm{L}}$, mit $\psi_{i\mathrm{L}} \equiv \mathcal{P}_{\mathrm{L}} \psi_i$.

Aufgabe 50. Zerfall des Myons und des τ -Leptons

Das Myon und das τ -Lepton sind instabil und können beide in das leichtere Elektron zerfallen:

$$\mu^{-} \to e^{-} + \bar{\nu}_{e} + \nu_{\mu} \qquad , \qquad \tau^{-} \to e^{-} + \bar{\nu}_{e} + \nu_{\tau} \,.$$
 (1)

Die zugehörigen Zerfallsraten und mittleren Lebensdauern werden hiernach mit $\Gamma_{\mu \to e}$, $\Gamma_{\tau \to e}$, $\tau_{\mu \to e}$, $\tau_{\tau \to e}$ bezeichnet.

i. Experimentelle Fakten

Entnehmen Sie der Review of Particle Physics die mittleren Lebensdauern des Myons und des τ -Leptons sowie die Verzweigungsverhältnisse der Zerfallskanäle (1). Folgern Sie daraus die Werte von $\tau_{\mu \to e}$ und $\tau_{\tau \to e}$ und berechnen Sie das Verhältnis $\tau_{\tau \to e}/\tau_{\mu \to e}$.

ii. Theoretische Überlegungen (ohne Berechnung!)

- a) Die Fermi- und V-A-Modelle der schwachen Wechselwirkung beschreiben die Zerfälle (1) mithilfe der jeweiligen 4-Teilchen-Vertizes. In führender Ordnung der Störungsrechnung ist der Beitrag dieser Vertizes zur Amplitude für den Prozess proportional zur Fermi-Konstanten G_F . Wie skalieren dann die Zerfallsraten $\Gamma_{\mu \to e}$, $\Gamma_{\tau \to e}$ und die Lebensdauer $\tau_{\mu \to e}$, $\tau_{\tau \to e}$ mit G_F ?
- b) In einem System "natürlicher Einheiten" wird die Fermi-Konstante üblicherweise in GeV⁻² angegeben, d.h. sie hat die Dimension $[G_F] = \mathsf{E}^{-2}$, wobei E die Basisgröße Energie bezeichnet. In sehr guter Näherung kann man die Masse des Elektrons (und die Massen der Neutrinos und Antineutrinos!) gegenüber den Massen m_{μ} , m_{τ} der schwereren Leptonen vernachlässigen. Dann kann $\tau_{\mu \to e}$ bzw. $\tau_{\tau \to e}$ in führender Ordnung der Störungsrechnung nur von G_F und m_{μ} bzw. G_F und m_{τ} abhängen.

Geben Sie an, wie $\tau_{\mu \to e}$ mit G_F und m_{μ} unter diesen Annahmen skaliert.

Hinweis: "Dimensionsanalyse" in natürlichen Einheiten.

c) Eine detaillierte Berechnung liefert in der Tat die Ergebnisse

$$\tau_{\mu \to e} \simeq K G_F^{\alpha} m_{\mu}^{\beta} \quad \text{und} \quad \tau_{\tau \to e} \simeq K G_F^{\alpha} m_{\tau}^{\beta},$$

wobei α und β die Potenzen sind, die Sie in **a)** und **b)** gefunden haben, während K eine reine Zahl¹ ist, die für beide Zerfälle die gleiche ist. Wie lautet dann das Verhältnis $R^{\text{th}} \equiv \tau_{\tau \to e}/\tau_{\mu \to e}$? Suchen Sie die Massen m_{μ} , m_{τ} und vergleichen Sie Ihre theoretische Abschätzung für R^{th} mit dem experimentellen Wert aus Frage **i.**.

 $^{^{1}}$... und zwar $192\pi^{3}$