Übung Nr. 4

Diskussionsthema: Was nennt man zweite Quantisierung? Welchen Vertauschungsrelationen genügen die verschiedenen Operatoren?

In diesem Zettel werden natürliche Einheiten verwendet.

Aufgabe 13. Vertauschungsrelation der Klein-Gordon-Felder

Sei $\hat{\phi}(x)$ der Klein–Gordon-Feldoperator und $\hat{\pi}(x) \equiv \partial_0 \hat{\phi}(x)^{\dagger}$ das dazu kanonisch konjugierte Feld. Verifizieren Sie die Vertauschungsrelation $[\hat{\phi}(t,\vec{x}),\hat{\pi}(t,\vec{y})] = i \delta^{(3)}(\vec{x}-\vec{y})$.

Aufgabe 14. Hamilton-Operator des Klein-Gordon-Feldes

Der Hamilton-Operator eines freien komplexen Klein-Gordon-Feldes lautet

$$\hat{H} = \int \left[\partial_0 \hat{\phi}(\mathbf{x})^{\dagger} \partial_0 \hat{\phi}(\mathbf{x}) + \vec{\nabla} \hat{\phi}(\mathbf{x})^{\dagger} \cdot \vec{\nabla} \hat{\phi}(\mathbf{x}) + m^2 \hat{\phi}(\mathbf{x})^{\dagger} \hat{\phi}(\mathbf{x}) \right] \mathrm{d}^3 \vec{x}.$$

Zeigen Sie mithilfe der Entwicklung der Felder in Erzeugungs- und Vernichtungsoperatoren, dass \hat{H} sich umschreiben lässt als

$$\hat{H} = \int \left[\frac{1}{2} (\hat{a}_{\vec{p}}^{\dagger} \hat{a}_{\vec{p}} + \hat{a}_{\vec{p}} \hat{a}_{\vec{p}}^{\dagger}) + \frac{1}{2} (\hat{b}_{\vec{p}}^{\dagger} \hat{b}_{\vec{p}} + \hat{b}_{\vec{p}} \hat{b}_{\vec{p}}^{\dagger}) \right] E_{\vec{p}} \, \mathrm{d}^{3} \vec{p} = \int \left[\hat{a}_{\vec{p}}^{\dagger} \hat{a}_{\vec{p}} + \hat{b}_{\vec{p}}^{\dagger} \hat{b}_{\vec{p}} + \delta^{(3)}(\vec{0}) \right] E_{\vec{p}} \, \mathrm{d}^{3} \vec{p}.$$

Aufgabe 15. Ebene elektromagnetische Welle

Eine linear polarisierte ebene Welle ist definitionsgemäß eine Lösung der Maxwell-Gleichungen im Vakuum der Form

$$A^{\mu}(\mathbf{x}) = \varepsilon^{\mu} f(n_{\mu} x^{\mu}),$$

mit ε^{μ} , n^{μ} x-unabhängigen Vierervektoren und f einer skalaren Funktion. Dieser Ausdruck von $A^{\mu}(x)$ ist Lorentz-kovariant.

- i. Wie lautet der Feldstärketensor $F^{\mu\nu}(x)$?
- ii. Überprüfen Sie, dass die Transformation $\varepsilon^{\mu} \to \varepsilon^{\mu} + \lambda n^{\mu}$ mit beliebigem $\lambda \in \mathbb{R}$ eine Eichtransformation ist.
- iii. Geben Sie den Ausdruck der Maxwell-Gleichungen im Vakuum an. Zeigen Sie, dass die Lösungen für $n_{\mu}n^{\mu} \neq 0$ sogenannte "reine Eichungen" sind, d.h. sie können durch eine Eichtransformation in $A^{\mu}(x) = 0$ wegtransformiert werden.
- iv. Sei nunmehr $n_{\mu}n^{\mu}=0$. Zeigen Sie, dass das Feld der Lorenz-Eichbedingung automatisch genügt, obwohl die Eichung noch nicht fixiert wurde.
- v. Zeigen Sie, dass $\varepsilon_{\mu}\varepsilon^{\mu} < 0$ für ein Feld gilt, das keine reine Eichung ist. Folglich kann man ohne Beschränkung der Allgemeinheit $\epsilon_{\mu}\epsilon^{\mu} = -1$ ansetzen.
- vi. Zeigen Sie, dass es möglich ist, durch eine Eichtransformation $\epsilon^0=0$ anzusetzen. Welcher Eichung entspricht diese (nicht-kovariante) Bedingung? Zeigen Sie, dass n^0 zu 1 normiert werden kann und überprüfen Sie, dass man die bekannte Form von $\phi(t, \vec{x})$ und $\vec{A}(t, \vec{x})$ für eine transversal polarisierte ebene Welle erhält.

Aufgabe 16. Vollständigkeitsrelation masseloser Spin-1-Teilchen

Zeigen Sie, dass die Polarisationsvektoren für Lösungen der Maxwell-Gleichungen in der Coulomb-Eichung der folgenden Relation genügen:

$$\sum_{\lambda=1,2} \varepsilon^i_{(\lambda)}(\vec{p}) \varepsilon^j_{(\lambda)}(\vec{p}) = \delta^{ij} - \frac{p^i p^j}{\vec{p}^{'2}}.$$