Tutorial sheet 9

32. Symmetrizer and antisymmetrizer

In the lecture on December 1st, the symmetrizer and antisymmetrizer

$$\mathscr{S} \equiv \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \sigma \quad \text{and} \quad \mathscr{A} \equiv \frac{1}{n!} \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) \sigma \,,$$
 (1)

elements of the group algebra $\mathbb{C}S_n$ of the symmetric group S_n , were introduced. Let $\tau \in S_n$ be a permutation. Compute first $\tau \mathscr{S}$ and $\tau \mathscr{A}$, and then \mathscr{S}^2 , \mathscr{A}^2 , $\mathscr{S}\mathscr{A}$ and $\mathscr{A}\mathscr{S}$.

33. Representations of S_n

The following Young diagrams are associated to two irreps. of the symmetric group S_4 :

$$\begin{array}{c|c} & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \end{array}, \quad \begin{array}{c|c} & \\ \hline & \\ \hline & \\ \end{array}$$

Compute their outer product and give the dimensions of all irreducible representations involved.

34. Symplectic group

Let $\mathbb{1}_n$ denote the $n \times n$ identity matrix, where $n \in \mathbb{N}^*$.

i. Show that the set of $2n \times 2n$ matrices M with real entries satisfying

$$M^{\mathsf{T}} \begin{pmatrix} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{pmatrix} M = \begin{pmatrix} 0 & \mathbb{1}_n \\ -\mathbb{1}_n & 0 \end{pmatrix}$$
(3)

is a group — called *symplectic group* and denoted¹ $Sp(2n, \mathbb{R})$ — for the usual matrix product. How many real parameters are needed to characterize an element of this group?

Hint: Find a relation between the inverse matrix M^{-1} and the transposed matrix M^{T} .

ii. Check that the matrices of $Sp(2n, \mathbb{R})$ preserve the scalar product

$$\boldsymbol{x} \cdot \boldsymbol{y} \equiv \sum_{a=1}^{n} (x_a y_{a+n} - x_{a+n} y_a) \tag{4}$$

where x, y are 2*n*-dimensional real vectors with coordinates x_a, y_a . Do you see where in physics the coordinate transformations realized by the symplectic matrices play a role? (*hint*: classical mechanics)

35. Exponential of a matrix

Let A and B be two complex $n \times n$ matrices. Show the following results:

i. If A and B commute, then $e^A e^B = e^{A+B}$.

ii.
$$(e^A)^{-1} = e^{-A}$$
.

iii. If B is regular, then $B e^A B^{-1} = e^{BAB^{-1}}$.

iv. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then the eigenvalues of e^A are $e^{\lambda_1}, \ldots, e^{\lambda_n}$, so that $\det e^A = e^{\operatorname{Tr} A}$.

¹The group is unfortunately sometimes denoted $\operatorname{Sp}(n, \mathbb{R})$...