Tutorial sheet 7

26. Regular representation

The regular representation of a finite group $\mathcal{G} = \{g_i\}$ is a $|\mathcal{G}|$ -dimensional representation $\hat{\mathscr{D}}^{(r)}$ defined as follows. Given a basis $\{e_i\}$ of the representation space \mathscr{V} , one first associates each group element g_i to the basis vector e_i for $i \in \{1, \ldots, |\mathcal{G}|\}$. For each $g \in \mathcal{G}$, the linear operator $\hat{\mathscr{D}}^{(r)}(g)$ on \mathscr{V} maps the basis vector e_i to the basis vector e_j associated to the group element $g_j = gg_i$.¹

i. Write down the matrices of the regular representations of the cyclic groups C_2 , C_3 and C_4 and of the Klein group V_4 .

ii. Determine the character $\chi^{(r)}$ of the regular representation.

Hint: Distinguish between the identity element e of \mathcal{G} and the other elements of the group.

iii. Let $\{\hat{\mathscr{D}}^{(\alpha)}\}$ denote a set of inequivalent unitary irreducible representations of \mathcal{G} , with respective representation spaces $\{\mathscr{V}^{(\alpha)}\}$ and characters $\{\chi^{(\alpha)}\}$.

a) Show with the help of characters that the coefficient a_{α} in the decomposition $\hat{\mathscr{D}}^{(\mathbf{r})} = \bigoplus_{\alpha} a_{\alpha} \hat{\mathscr{D}}^{(\alpha)}$ of the regular representation equals the dimension of the representation space $\mathscr{V}^{(\alpha)}$.

b) Deduce from **a**) the equality $\sum_{\text{irreps. }\alpha} (\dim \mathscr{V}^{(\alpha)})^2 = |\mathcal{G}|.$

27. Group representation from a representation of a quotient group

Let \mathcal{N} be a normal subgroup of a group \mathcal{G} . A representation $\mathscr{D}_{\mathcal{G}/\mathcal{N}}$ of the quotient group \mathcal{G}/\mathcal{N} can be *lifted* to a representation $\mathscr{D}_{\mathcal{G}}$ of the group \mathcal{G} of the same dimension by defining

$$\mathscr{D}_{\mathcal{G}}(g) \equiv \mathscr{D}_{\mathcal{G}/\mathcal{N}}(g\mathcal{N}) \quad \forall g \in \mathcal{G}.$$
 (1)

i. Check that Eq. (1) indeed defines a representation of \mathcal{G} . How are the characters of $\mathscr{D}_{\mathcal{G}/\mathcal{N}}$ and $\mathscr{D}_{\mathcal{G}}$ related?

ii. The symmetry group of a square D_4 , which you already encountered in exercise 25., has a normal subgroup \mathcal{N} consisting of the identity transformation and the rotation through 180° — this is actually the center of D_4 .

a) Check that the quotient group D_4/\mathcal{N} is isomorphic to the Klein group V_4 .

b) Write down the character table for V_4 and show that the characters of some of the irreducible representations of D_4 (exercise **25.**) can be lifted from those of the irreps. of V_4 .

28. Symmetry group of a square (2)

The symmetry group of a square D_4 has a (normal) subgroup, consisting of the rotations that leave the square invariant, which is isomorphic to the group C_4 .

i. What are the irreducible representations of this subgroup?

ii. In exercise 25. you found that all one-dimensional (irreducible) representations of the group D_4 are real. This means that some of the irreps. of the normal subgroup C_4 are not irreps. of D_4 . Explain why. What consequence can this have in a physical context?

¹For the purist, the representation thus defined is the left regular representation of \mathcal{G} .