Tutorial sheet 3

12. Conjugacy classes of the three-dimensional rotations

Throughout this exercise, we consider rotations about axes going through a fixed point of threedimensional space. Let $\mathscr{R}(\vec{n}, \alpha)$ denote the rotation through an angle α about the axis with direction \vec{n} .

i. Show that for any arbitrary rotation \mathscr{R} , the product $\mathscr{RR}(\vec{n}, \alpha)\mathscr{R}^{-1}$ is a rotation through α about the axis with direction $\vec{n}' = \mathscr{R}\vec{n}$.

ii. Deduce from the result of i. the conjugacy classes of the group of three-dimensional rotations.

13. A quantum-mechanical problem with D_n symmetry

In the lecture, you saw that the energy-eigenfunctions of a quantum-mechanical problem in one spatial dimension with an even potential V(x) are necessarily either even or odd. The present exercise relies on the same idea.

i. Consider the (x, y)-plane. Let \mathscr{R}_n denote the two-dimensional rotation through an angle $2\pi/n$ (with $n \in \mathbb{N}^*$) around the origin and \mathscr{S}_y denote the reflection across the x-axis.

Show that \mathscr{R}_n and \mathscr{S}_y with the usual composition of geometrical transformations generate a finite group D_n , which for $n \ge 2$ is the symmetry group of an *n*-sided regular polygon¹ centered on the origin and with one corner on the *x*-axis. (For n = 1, D_1 is the symmetry group of the figure consisting of two points at $x = x_0, y = y_0$ and $x = x_0, y = -y_0$ respectively, with $x_0 \in \mathbb{R}, y_0 \in \mathbb{R}^*$.) What is the order of D_n ? Check that for every element $\mathscr{R} \in D_n$, the identity $\mathscr{S}_y^{-1} \mathscr{R} \mathscr{S}_y = \mathscr{R}^{-1}$ holds.

ii. Consider the motion in two spatial dimensions — in the (x, y)-plane — of a particle in a potential V(x, y) with D_n symmetry about the origin. If $|\psi\rangle$ denotes a state vector of the system and $\psi(x, y)$ the corresponding wave function in position representation, then $\hat{\mathscr{R}}|\psi\rangle$ denotes the state vector corresponding to the wave function ψ evaluated at the point $\mathscr{R}(x, y)$ with $\mathscr{R} \in D_n$.

a) Let $|\psi_E\rangle$ denote an eigenstate of the Hamiltonian \hat{H} of the system. Show that

$$|\psi_k\rangle = \sum_{p=1}^n e^{2i\pi kp/n} \left(\hat{\mathscr{R}}_n\right)^p |\psi_E\rangle \quad \text{for } k \in \{1, \dots, n\}$$

and

 $|\psi_{\pm}\rangle = \left(\hat{\mathbb{1}} \pm \hat{\mathscr{S}}_{y}\right)|\psi_{E}\rangle$

are also eigenstates of \hat{H} , where $\hat{1}$ denotes the identity operator on the Hilbert space of the system.

b) Show the orthogonality relations $\langle \psi_k | \psi_{k'} \rangle = 0$ for $k, k' \in \{1, \dots, n\}$ with $k \neq k'$ and $\langle \psi_+ | \psi_- \rangle = 0$.

c) Show that $|\psi_k\rangle$ is eigenvector of $\hat{\mathscr{R}}_n$ and $|\psi_{\pm}\rangle$ eigenvector of $\hat{\mathscr{S}}_y$. What are the respective eigenvalues? d) Why does a joint eigenbasis of $\hat{\mathscr{R}}_n$, $\hat{\mathscr{S}}_y$, and \hat{H} exist if and only if $n \in \{1, 2\}$? To answer this question calculate the action of $\hat{\mathscr{S}}_y$ on the state vector

$$|\psi_{k,\pm}\rangle = \sum_{p=1}^{n} e^{2i\pi kp/n} \left(\hat{\mathscr{R}}_n\right)^p \left(\hat{\mathbb{1}} \pm \hat{\mathscr{S}}_y\right) |\psi_E\rangle \quad \text{with } k \in \{1,\ldots,n\}.$$

¹OK, you may have difficulty picturing in your head the "digon" with n = 2. You may replace it with a non-square rectangle with its sides parallel to the coordinate axes, and let the length of the sides parallel to the *y*-axis go to 0.