Tutorial sheet 14 ("Mock exam")

50. Dihedral group D_4

Let D_4 denote the dihedral group of order 8, i.e. the symmetry group of a square.

i. You might be tempted to consider that D_4 can be generated by a rotation r_4 through 90° and a reflexion s. Instead of that, explain how the 4 elements $\{s, sr_4, sr_4^2, sr_4^3\}$ can be viewed as rotations through 180°.

ii. The group D_4 consists of 5 conjugacy classes. Can you deduce from this information the number of irreducible representations of D_4 and their respective dimensions? Explain your result.

iii. Assume that the square defines the (x, y)-plane and consider a system of coordinates (x, y, z) such that the square vertices sit at $(\pm 1, \pm 1, 0)$. Construct a three-dimensional representation of D₄ and compute the corresponding characters. Is this representation reducible?

51. Coulomb potential

Consider the motion of a particle in a Coulomb potential, described by the Lagrange function

$$\mathcal{L} = \frac{m}{2}\dot{\vec{r}}^2 + \frac{k}{|\vec{r}|},\tag{1}$$

where m is the mass of the particle and k > 0 some coupling constant.

- i. What are the corresponding equations of motion?
- ii. Consider the two kinds of infinitesimal transformations

$$\vec{r} \to \mathcal{T}_1(\vec{r}) = \vec{r} + \delta O \, \vec{r},$$
(2)

where δO is an infinitesimal anti-symmetric 3×3 matrix, $\delta O^{\mathsf{T}} = -\delta O$, and

$$\vec{r} \to \mathcal{T}_2(\vec{r}) = \vec{r} + 2(\delta \vec{a} \cdot \vec{r})\vec{p} - (\delta \vec{a} \cdot \vec{p})\vec{r} - (\vec{r} \cdot \vec{p})\delta \vec{a},$$
(3)

where $\delta \vec{a}$ is an infinitesimal vector of \mathbb{R}^3 and \vec{p} the (linear) momentum of the particle.

a) Show that both infinitesimal transformations correspond to symmetries of the Lagrange function (1). Hint: Expand \mathcal{L} to first order in δO and $\delta \vec{a}$.

b) To which symmetry group does transformation (2) correspond?

iii) According to Noether's theorem, one can associate conserved quantities to both symmetries. Show that these quantities are

$$\vec{L} = \vec{r} \times \vec{p} \quad , \quad \vec{A} = \vec{p} \times (\vec{r} \times \vec{p}) - \frac{mkr}{|\vec{r}|}, \tag{4}$$

respectively. Explain their physical significance.

52. Heisenberg group

Let \hat{x} , \hat{p} denote the position and momentum operators in the x-direction and $\hat{1}$ be the identity operator.

i. Show that the three operators $\{\hat{x}, \hat{p}, \hat{1}\}$ form a Lie algebra (the Heisenberg algebra), which is closed under taking commutators. Give its commutation relations and the structure constants.

ii. Consider the three-dimensional upper triangular matrices

$$\begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \quad \text{with } a, b, c \in \mathbb{R}.$$

$$\tag{5}$$

Show that the matrices of this type constitute a Lie group, often referred to as the *Heisenberg group*. Of which form are the matrices of the corresponding Lie algebra? Show that the latter is isomorphic to that considered in **i**.

iii. Is the Heisenberg group compact?

53. Irreducible representations of SU(5)

i. Considering as usual that \Box stands for the defining (5) representation of SU(5), which Young diagrams are associated to the conjugate representation $\overline{5}$ and to the adjoint representation? What is the dimension of the latter?

ii. Which (simple) Young diagram corresponds to the **10** representation? Inspiring yourself from the "correspondence" between the **5** and the $\overline{5}$, can you then guess which Young diagram stands for the $\overline{10}$ representation?

iii. Compute the outer product of the Young diagrams consisting of single columns with two resp. three boxes:

-	\otimes	

Viewing these diagrams as irreducible representations of SU(5), compute the dimensions of all irreducible representations involved and write down explicitly the corresponding Clebsch–Gordan series in the form $? \otimes ?? = \cdots$.

The group SU(5) was proposed as gauge group of a "grand unified theory" (GUT) encompassing the strong and electroweak interactions of particle physics (cf. Georgi–Glashow model).