Tutorial sheet 13

46. Theories for a classical vector field

i. Consider a (4-)vector field with components $A^{\mu}(\mathbf{x})$, described by the Lagrange density

$$\mathscr{L}_0 = -\frac{1}{2} (\partial^{\mu} A^{\nu}) (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}), \qquad (1)$$

where the 4 components A^{ν} are to be considered as independent fields.

a) Write down the corresponding Euler–Lagrange equations. For the sake of brevity, you may introduce the notation $F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$.

b) The Lagrange density (1) is invariant under the transformations $A^{\mu} \to A'^{\mu} = A^{\mu} + \varepsilon^{\mu}$ where the ε^{μ} are the components of an arbitrary, time- and space-independent 4-vector. Derive the Noether current J^{μ} associated with this symmetry. What is the conservation equation $\partial_{\mu}J^{\mu} = 0$ equivalent to?

ii. Consider now a vector field with the Lagrange density

$$\mathscr{L}_{\rm st.} = -\frac{1}{4} (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) \tag{2}$$

and write down the corresponding Euler–Lagrange equations. What do you notice?

iii. How do the Lagrange densities (1) and (2) behave under the transformation $A^{\mu} \rightarrow A'^{\mu} = A^{\mu} + \partial^{\mu} \chi$, with χ an arbitrary (differentiable) function of the space-time coordinates? Is the group of transformations of that type a symmetry of the corresponding physical systems?

47. Isospin symmetry

i. Consider a theory for two Dirac spinor-fields ψ_p , ψ_n (standing respectively for a proton and a neutron) with the Lagrange density

$$\mathscr{L}_{N} = \bar{\psi}_{p} \big(i\gamma^{\mu} \partial_{\mu} - m_{p} \big) \psi_{p} + \bar{\psi}_{n} \big(i\gamma^{\mu} \partial_{\mu} - m_{n} \big) \psi_{n}, \tag{3}$$

where the γ^{μ} , $\mu = 0, 1, 2, 3$ are Dirac matrices, while the adjoint spinors $\bar{\psi}_p$, $\bar{\psi}_n$ are to be treated as fields independent of ψ_p , ψ_n .

a) For the sake of completeness, derive the equations of motions obeyed by ψ_p and ψ_n . Are they known to you?

b) If $m_p \neq m_n$, the Lagrange density (3) is invariant under a "global" U(1) × U(1) symmetry whose transformations are of the form

$$\begin{cases} \psi_p \to \psi'_p = e^{-i\Lambda_p} \psi_p &, \quad \bar{\psi}_p \to \bar{\psi}'_p = e^{i\Lambda_p} \bar{\psi}_p \\ \psi_n \to \psi'_n = e^{-i\Lambda_n} \psi_n &, \quad \bar{\psi}_n \to \bar{\psi}'_n = e^{i\Lambda_n} \bar{\psi}_n \end{cases}$$
(4)

where Λ_p and Λ_n are time- and space-independent real constants. Derive the corresponding Noether currents. Can you guess what the associated conserved charges are?

- ii. Assume now that $m_p = m_n$.
- a) Introducing the "two-dimensional vector" with Dirac-spinor entries

$$\Psi \equiv \begin{pmatrix} \psi_p \\ \psi_n \end{pmatrix}$$

and its adjoint $\bar{\Psi} \equiv (\bar{\psi}_p \ \bar{\psi}_n)$, show that one can recast the Lagrange density (3) in the form $\mathscr{L}_N = \bar{\Psi} D \Psi$

where D is a "2 × 2" matrix proportional to $\mathbb{1}_2$, and that it is now invariant under transformations $\Psi \to \Psi' = \mathcal{U}\Psi, \ \bar{\Psi} \to \bar{\Psi}' = \bar{\Psi}\mathcal{U}^{\dagger}$ with a time- and space-independent $\mathcal{U} \in \mathrm{U}(2)$.

b) Writing \mathcal{U} as $e^{i\theta}U$ with $e^{i\theta} \in U(1)$ and $U \in SU(2)$, write down infinitesimal transformations of the fields Ψ and $\overline{\Psi}$ (*hint*: write the SU(2) matrix in exponential form) and derive the Noether currents associated with the U(1) and SU(2) symmetries. SU(2) is the so-called "isospin symmetry" of the system (cf. exercise **45**).

If you have some notions of particle physics, can you guess what the conserved charge associated with the U(1) part corresponds to?

This exercise will be continued in exercise 49.

48. Young diagrams and representations of SU(N)

i. Compute the following products of Young diagrams:

ii. Viewing as the defining (N) representation of SU(N), compute the dimensions of all irreducible representations involved in question i. for N = 2, 3, 4 and write down explicitly the corresponding Clebsch–Gordan series in the form $N \otimes N = \cdots$, and so on.

(For N = 2, you should be able to double-check the results with your knowledge from the "SU(2)-SO(3)" lecture; for N = 3, those with some knowledge of the quark model may recognize part of the results.)

49. Isospin symmetry (2)

i. Consider now a theory with 3 real scalar fields π_1 , π_2 , π_3 , collectively denoted by a 3-vector $\vec{\pi}$, described by the Lagrange density

$$\mathscr{L}_{\pi} = -\frac{1}{2} \big(\partial_{\mu} \vec{\pi} \big) \cdot \big(\partial^{\mu} \vec{\pi} \big) - \frac{1}{2} m_{\pi}^2 \vec{\pi}^2.$$
(5)

Check that this Lagrange density is invariant under transformations $\vec{\pi} \to \vec{\pi}' = O\vec{\pi}$ with a timeand space-independent $O \in SO(3)$ and derive the corresponding Noether currents. Why is the present invariance possibly the "same" isospin symmetry as in exercise 47.ii.?

ii. The fields Ψ introduced in 47.ii.a) and $\vec{\pi}$ are coupled together by a term

$$\mathscr{L}_{N-\pi} = \mathrm{i}g(\bar{\Psi}\gamma^5\vec{\sigma}\Psi)\cdot\vec{\pi} \tag{6}$$

where $\vec{\sigma}$ denotes as usual a 3-vector whose entries are the Pauli matrices, while γ^5 is a matrix that acts on the spinorial degrees of freedom of the fields ψ_p , ψ_n and plays no role in the following.

a) Compute the behavior of the term $\bar{\Psi}\gamma^5 \vec{\sigma}\Psi$ under infinitesimal isospin transformations (*hint*: you may need the identity $[\sigma_i, \alpha_j \sigma_j] = 2i\alpha_j \sum_k \epsilon_{ijk} \sigma_k$) and deduce therefrom the invariance of the interaction Lagrange density (6) under isospin.

b) Derive the Noether current(s) associated with isospin symmetry for the theory with Lagrange density

$$\mathscr{L}_{N+\pi} = \mathscr{L}_N + \mathscr{L}_\pi + \mathscr{L}_{N-\pi}.$$
(7)

c) The particle-physics fans may rewrite the interaction term (6) in terms of the proton and neutron fields ψ_p , ψ_n and of the physical pions (π^+, π^-, π^0) given by

$$\pi_1 = \frac{1}{\sqrt{2}}(\pi^+ + \pi^-)$$
, $\pi_2 = -\frac{i}{\sqrt{2}}(\pi^+ - \pi^-)$, $\pi_3 = \pi^0$.