Tutorial sheet 11

39. Lie bracket of generators of $\mathfrak{so}(n)$

The Lie algebra $\mathfrak{so}(n)$ of the special orthogonal group SO(n) is the space of traceless antisymmetric $n \times n$ matrices, where $n \geq 2$. (Troughout this exercise, the position of the indices is irrelevant.)

i. Check that a basis of generators (in the physicists' convention) consists of matrices T^{ab} , with $1 \leq a < b \leq n$, whose ij-entry is $(T^{ab})_{ij} = -i(\delta^a_i \delta^b_j - \delta^a_j \delta^b_i)$, where δ^k_l is the usual Kronecker symbol. Show that the Lie bracket of two such generators is

$$[T^{ab}, T^{cd}] = -i \left(\delta^{bc} T^{ad} + \delta^{ad} T^{bc} - \delta^{bd} T^{ac} - \delta^{ac} T^{bd} \right).$$
(1)

ii. Show that in the case n = 3 you recover results from the lecture.

iii. Denote X a vector with n real components x^j . Given a matrix $O \in SO(n)$ close to the identity matrix $\mathbb{1}_n$, the transformation $X \to OX \equiv X'$ yields $X' = X + \delta X$ where the components δx^j of δX are "small". Show that one may write

$$\delta x^{j} = -\frac{\mathrm{i}}{2}\omega_{ab}T^{ab}x^{j} \quad \text{with} \quad T^{ab} \equiv -\mathrm{i}\left(x^{a}\frac{\partial}{\partial x^{b}} - x^{b}\frac{\partial}{\partial x^{a}}\right) \tag{2}$$

and with ω_{ab} antisymmetric (and traceless). Convince yourself that the differential operators T^{ab} defined in Eq. (2) are in one-to-one correspondence with the matrices T^{ab} of question **i**.

40. SU(1,1) and $SL(2,\mathbb{R})$

i. The group SU(1,1) consists of the complex 2×2 matrices U with determinant 1 such that $U^{\dagger} \eta U = \eta$, where $\eta \equiv \text{diag}(1, -1)$.

a) What is the dimension of SU(1,1)?

b) Which equation does an element X of the Lie algebra $\mathfrak{su}(1,1)$ obey? What does that equation imply for the matrix elements of X? Prove that one may write a basis of $\mathfrak{su}(1,1)$ in terms of the Pauli matrices and compute their commutation relations.

c) Is $\mathfrak{su}(1,1)$ isomorphic¹ to the algebra $\mathfrak{so}(3)$?

ii. Consider now the special linear group $SL(2, \mathbb{R})$.

a) Recall its definition and give its dimension. How is its Lie algebra $\mathfrak{sl}(2,\mathbb{R})$ defined? Give a basis in terms of Pauli matrices.

b) Show that the two Lie algebras $\mathfrak{su}(1,1)$ and $\mathfrak{sl}(2,\mathbb{R})$ are isomorphic.

41. Two-dimensional representation of U(1)

Consider the map $\mathscr{D}^{(m)}$ from U(1) into SO(2) defined by

$$\mathscr{D}^{(m)}(\mathrm{e}^{\mathrm{i}\alpha}) = \begin{pmatrix} \cos(m\alpha) & \sin(m\alpha) \\ -\sin(m\alpha) & \cos(m\alpha) \end{pmatrix}.$$
(3)

For which values of m is $\mathscr{D}^{(m)}$ a representation of the group U(1)? With which physical quantity would you associate the number m?

¹A homomorphism of Lie algebras is a bijective linear application between the underlying vector spaces that preserves the Lie brackets.

42. A property of $\mathfrak{so}(4)$

In exercise **39.** you saw a family of generators of $\mathfrak{so}(n)$ and their Lie brackets. Take now n = 4 and define (beware the signs!)

$$A_1 \equiv \frac{1}{2}(T^{12} - T^{34}) \quad , \quad A_2 \equiv \frac{1}{2}(T^{13} + T^{24}) \quad , \quad A_3 \equiv \frac{1}{2}(T^{14} - T^{23}) \tag{4}$$

and

$$B_1 \equiv \frac{1}{2}(T^{12} + T^{34}) \quad , \quad B_2 \equiv \frac{1}{2}(-T^{13} + T^{24}) \quad , \quad B_3 \equiv \frac{1}{2}(T^{14} + T^{23}).$$
 (5)

Compute the commutators $[A_i, A_j]$, $[B_i, B_j]$, and $[A_i, B_j]$. How would you be tempted to interpret your findings? (You actually know a physics problem with a "hidden" SO(4) symmetry, which will be the topic of a later exercise.)

We wish you a merry Christmas and a happy new year!