Tutorial sheet 10

36. Lie algebras of classical groups

i. Let G be a matrix Lie group and g the space of matrices such that $M \in \mathfrak{g}$ implies $e^M \in \mathcal{G}$.

Show that a) $\mathfrak{gl}(n)$, b) $\mathfrak{sl}(n)$, c) $\mathfrak{o}(n) = \mathfrak{so}(n)$, d) $\mathfrak{u}(n)$, e) $\mathfrak{su}(n)$, respectively associated to the groups $GL(n)$, $SL(n)$, $O(n)$ or $SO(n)$, $U(n)$, $SU(n)$, consist of a) arbitrary $n \times n$ matrices, b) traceless matrices, c) antisymmetric matrices, d) antihermitian matrices, e) traceless antihermitian matrices.

ii. For each of the above cases, check that the characteristic property (tracelessness, antisymmetry. . .) of the matrices of g is preserved by the commutator, thereby ensuring that g is a Lie algebra.

37. An example of the non-surjectivity of the exponential map

Consider the non-compact group $SL(2, \mathbb{R})$: its Lie algebra $\mathfrak{sl}(2, \mathbb{R})$ consists of traceless 2×2 -matrices with real entries.

i. For any $M \in \mathfrak{sl}(2,\mathbb{R})$, show that Tr $M^{2n} = 2(-\det M)^n$ and Tr $M^{2n+1} = 0$ for all $n \in \mathbb{N}$. Hint: Consider the characteristic polynomial of M.

ii. Deduce from i. that Tr $e^M \ge -2$ for all $M \in \mathfrak{sl}(2,\mathbb{R})$. Give an example of element of $SL(2,\mathbb{R})$ with a trace strictly smaller than −2 and conclude.

38. Relation between $SO(3)$ and $SU(2)$

i. The group $SO(3)$ consists of the real 3×3 -matrices with determinant 1 that preserve the usual (Euclidean) scalar product, i.e. it describes rotations in \mathbb{R}^3 . Let $\mathscr{R}_{\vec{n}}(\alpha)$ denote the rotation through the angle α about the axis with unit vector \vec{n} .

a) As a warm up, convince yourself that the rotations $\mathscr{R}_{\vec{n}}(\alpha)$ and $\mathscr{R}_{-\vec{n}}(-\alpha)$ are identical and derive the Rodrigues formula

$$
\mathscr{R}_{\vec{n}}(\alpha)\vec{x} = (\cos \alpha)\vec{x} + (1 - \cos \alpha)(\vec{n} \cdot \vec{x})\vec{n} + (\sin \alpha)\vec{n} \times \vec{x} \qquad \forall \vec{x} \in \mathbb{R}^3. \tag{1}
$$

Hint: Decompose \vec{x} in two components parallel and perpendicular to \vec{n} .

b) Associate to the rotation $\mathscr{R}_{\vec{n}}(\alpha)$ the vector **u** with 4 components $\mathbf{u} \equiv (\vec{u} \equiv \vec{n} \cos \frac{\alpha}{2}, u_4 \equiv \sin \frac{\alpha}{2}).$ Show that **u** belongs to the unit sphere $\mathbb{S}^3 \subset \mathbb{R}^4$, i.e. that the Euclidean norm $[\vec{u}^2 + (u_4)^2]^{1/2}$ of **u** equals 1. What happens to $\mathscr{R}_{\vec{n}}(\alpha)$ and to u when you add to α an odd multiple of 2π ?

ii. The group $SU(2)$ consists of the unitary 2×2 -matrices with determinant 1.

a) (Reminder of your Quantum Mechanics lecture) Check that for every point $u \in \mathbb{S}^3$, the matrix

$$
U = u_4 \mathbb{1}_2 - \mathrm{i} \,\vec{u} \cdot \vec{\sigma} \tag{2}
$$

is in SU(2), where $\mathbb{1}_2$ is the unit 2×2 -matrix while $\vec{\sigma}$ is a "vector" whose entries are the Pauli matrices

$$
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} , \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} , \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} . \tag{3}
$$

Conversely, show that every matrix of $SU(2)$ $SU(2)$ can be written in the form (2) . Deduce therefrom that $SU(2)$ and \mathbb{S}^3 are in bijection to each other. By "exporting" the group law of $SU(2)$ to \mathbb{S}^3 , one defines a group structure on the latter, which is then isomorphic to SU(2).

b) Let \vec{n} be a unit vector of \mathbb{R}^3 (one may write that \vec{n} belongs to the sphere \mathbb{S}^2) and $\alpha \in [0, 2\pi]$. Show the identity

$$
U_{\vec{n}}(\alpha) \equiv e^{-i\alpha \vec{n} \cdot \vec{\sigma}/2} = \left(\cos \frac{\alpha}{2}\right) 1_2 - i \left(\sin \frac{\alpha}{2}\right) \vec{n} \cdot \vec{\sigma},\tag{4}
$$

which defines the matrix $U_{\vec{n}}(\alpha)$.

iii. Homomorphism between $SU(2)$ and $SO(3)$

a) To each vector $\vec{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$ one associates a traceless Hermitian matrix X according to

$$
X \equiv \vec{x} \cdot \vec{\sigma} = \begin{pmatrix} x_3 & x_1 - i x_2 \\ x_1 + i x_2 & -x_3 \end{pmatrix} . \tag{5}
$$

Show that the correspondence is bijective, i.e. that to any traceless Hermitian matrix X one can associate a unique vector $\vec{x} \in \mathbb{R}^3$. (*hint*: trace!)

b) Given a unitary matrix $U \in SU(2)$, one maps the matrix X of Eq. [\(5\)](#page-1-0) to the matrix $X' = U X U^{\dagger}$. This defines a linear transformation $\vec{x} \mapsto \vec{x}' = \mathcal{T}(U)\vec{x}$ such that $X' = \vec{\sigma} \cdot \vec{x}'$. Show that $\mathcal{T}(U)$ is a rotation.

Hint: You may either show that $\mathcal{T}(U)$ is an isometry — preserving $|\vec{x}|$ — with determinant 1, or compute X' by introducing an explicit form for U.

c) One can even show — if you did not use that result in b) — that $\mathcal{T}(U_{\vec{n}}(\alpha))$ is the rotation $\mathscr{R}_{\vec{n}}(\alpha)$. Show that $\mathcal T$ is a group homomorphism from SU(2) onto SO(3). Is it an isomorphism? If no, what is its kernel?

d) Summarize for yourself what you have learned of the relationships between $SU(2)$, \mathbb{S}^3 and $SO(3)$.