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36. Lie algebras of classical groups

i. Let G be a matrix Lie group and g the space of matrices such that M ∈ g implies eM ∈ G.
Show that a) gl(n), b) sl(n), c) o(n) = so(n), d) u(n), e) su(n), respectively associated to the

groups GL(n), SL(n), O(n) or SO(n), U(n), SU(n), consist of a) arbitrary n×n matrices, b) traceless
matrices, c) antisymmetric matrices, d) antihermitian matrices, e) traceless antihermitian matrices.

ii. For each of the above cases, check that the characteristic property (tracelessness, antisymmetry. . . )
of the matrices of g is preserved by the commutator, thereby ensuring that g is a Lie algebra.

37. An example of the non-surjectivity of the exponential map
Consider the non-compact group SL(2,R): its Lie algebra sl(2,R) consists of traceless 2×2-matrices

with real entries.

i. For any M ∈ sl(2,R), show that TrM2n = 2(−detM)n and TrM2n+1 = 0 for all n ∈ N.
Hint : Consider the characteristic polynomial of M .

ii. Deduce from i. that Tr eM ≥ −2 for all M ∈ sl(2,R). Give an example of element of SL(2,R) with
a trace strictly smaller than −2 and conclude.

38. Relation between SO(3) and SU(2)

i. The group SO(3) consists of the real 3 × 3-matrices with determinant 1 that preserve the usual
(Euclidean) scalar product, i.e. it describes rotations in R3. Let R~n(α) denote the rotation through the
angle α about the axis with unit vector ~n.
a) As a warm up, convince yourself that the rotations R~n(α) and R−~n(−α) are identical and derive
the Rodrigues formula

R~n(α)~x = (cosα)~x+ (1− cosα)(~n ·~x)~n+ (sinα)~n×~x ∀~x ∈ R3. (1)

Hint : Decompose ~x in two components parallel and perpendicular to ~n.

b) Associate to the rotation R~n(α) the vector u with 4 components u ≡ (~u ≡ ~n cos α2 , u4 ≡ sin α
2 ).

Show that u belongs to the unit sphere S3 ⊂ R4, i.e. that the Euclidean norm [~u2 + (u4)
2]1/2 of u

equals 1. What happens to R~n(α) and to u when you add to α an odd multiple of 2π?

ii. The group SU(2) consists of the unitary 2× 2-matrices with determinant 1.
a) (Reminder of your Quantum Mechanics lecture) Check that for every point u ∈ S3, the matrix

U = u412 − i~u · ~σ (2)

is in SU(2), where 12 is the unit 2× 2-matrix while ~σ is a “vector” whose entries are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3)

Conversely, show that every matrix of SU(2) can be written in the form (2). Deduce therefrom that
SU(2) and S3 are in bijection to each other. By “exporting” the group law of SU(2) to S3, one defines
a group structure on the latter, which is then isomorphic to SU(2).
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b) Let ~n be a unit vector of R3 (one may write that ~n belongs to the sphere S2) and α ∈ [0, 2π]. Show
the identity

U~n(α) ≡ e−iα~n·~σ/2 =

(
cos

α

2

)
12 − i

(
sin

α

2

)
~n · ~σ, (4)

which defines the matrix U~n(α).

iii. Homomorphism between SU(2) and SO(3)
a) To each vector ~x = (x1, x2, x3) ∈ R3 one associates a traceless Hermitian matrix X according to

X ≡ ~x · ~σ =

(
x3 x1 − ix2

x1 + ix2 −x3

)
. (5)

Show that the correspondence is bijective, i.e. that to any traceless Hermitian matrixX one can associate
a unique vector ~x ∈ R3. (hint : trace!)
b) Given a unitary matrix U ∈ SU(2), one maps the matrix X of Eq. (5) to the matrix X ′ = UXU †.
This defines a linear transformation ~x 7→ ~x′ = T (U)~x such that X ′ = ~σ · ~x′. Show that T (U) is a
rotation.
Hint : You may either show that T (U) is an isometry — preserving |~x| — with determinant 1, or
compute X ′ by introducing an explicit form for U .
c) One can even show — if you did not use that result in b) — that T (U~n(α)) is the rotation R~n(α).
Show that T is a group homomorphism from SU(2) onto SO(3). Is it an isomorphism? If no, what is
its kernel?
d) Summarize for yourself what you have learned of the relationships between SU(2), S3 and SO(3).
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