Symmetries in Physics




Time/place: Lecture (eKVV):  Tue 10:00-12:00 (D6-135) & Fri 10:00-12:00 (D6-135) 
Tutorials (eKVV):  Group 1: Wed 12:00-14:00 (D6-135); group 2: Thu 10:00-12:00 (D6-135)

Instructor: Nicolas Borghini (borghini at physik dot uni-bielefeld dot de) E6-123
Tutor:  Steffen Feld & Dennis Schröder
 
Written exams: Thursday, February 22, 2018 10-13 in H6 / Thu., March 22, 2018 10-13 in D6-135

Homepage:   http://www.physik.uni-bielefeld.de/~borghini/Teaching/Symmetries
 
News: Results of the evaluation
 
Prerequisites: Classical mechanics, Special Relativity, Quantum Mechanics
(Theoretische Physik I, II)
 
Literature: * Cornwell: Group theory in physics
* Georgi: Lie algebras in particle physics
* Hamermesh: Group theory and its application to physical problems
* Jones: Groups, representations and physics
 
Content: Basics of group theory  
  Oct. 10  Introduction. Definition of a group
  Oct. 13 & 17  Examples of groups
  Oct. 17  Subgroups and cosets; conjugacy
  Oct. 20  Normal subgroups; quotient groups
               → see also Normal subgroups and quotient groups by T.Gowers
  Oct. 24  Direct products
  Oct. 24 & Nov. 3  Homomorphisms
Representation theory  
  Nov. 3 & 7  Group action; definition of a group representation
  Nov. 7 & 10  First examples of group representations
  Nov. 10  Reducible and irreducible representations; case of finite groups
  Nov. 14  Schur's lemma
Representations of finite groups  
  Nov. 14  Orthogonality relations for finite groups
  Nov. 17  Character theory
  Nov. 21  Reduction of a representation (1)
  Nov. 24  Reduction of a representation (2)
Application to physical problems (1)  
  Nov. 21 & 24 Electric dipole; molecular vibrations
  Nov. 28  Crystal field splitting
  Dec. 1st  Regular representation;  Representations of the symmetric group Sn
  Dec. 5  Product of irreps. of the symmetric group Sn
Continuous groups  
  Dec. 5 & 8  Lie groups: definition and examples
  Dec. 12 & 15  Lie algebras and their relation to Lie groups
  Dec. 15 & 19  SO(3) and SU(2)
  Dec. 19 & 22  Representations of SO(3) and SU(2)
  Jan. 9  Tensor product of irreps. of SU(2); quantum-mechanical operators and rotations
  Jan. 12  Wigner-Eckart theorem
  Jan. 19 & 23  Representations of SU(n)
  Jan. 30  Lorentz and Poincaré groups: first properties
  Feb. 2  Generators and representations of the Lorentz and Poincaré groups
Application to physical problems (2)  
  Jan. 16  Symmetries in classical field theory
  Jan. 26  Gauge field theories
 
  Feb. 22  1st exam  (stats.)
  Mar. 22  2nd exam  (stats.)