Übungsblatt Nr.12

Diskussionsthema: Thermodynamische Potentiale in der Statistischen Mechanik

35. Energiefluktuationen im kanonischen Ensemble

Ein System sei mit einem Wärmebad gekoppelt, mit dem es Energie austauschen kann. Dann ist die innere Energie $U = \langle \hat{H} \rangle$ des Systems eine Zufallsvariable.

i. Drücken Sie die Varianz σ_U^2 der Verteilung von U durch die isochore Wärmekapazität C_V aus. Wenden Sie das Ergebnis auf das Beispiel eines Wassertröpfchens mit einem Durchmesser von 1 μ m an. Die spezifische Wärmekapazität von Wasser unter normalen Bedingungen ist 4,18 J K⁻¹ g⁻¹ (vgl. Definition der Kalorie).

Hinweis: Zur Erinnerung ist $C_{\mathcal{V}} = \left(\frac{\partial U}{\partial T}\right)_{\mathcal{V}, N}$.

ii. Wie verhält sich die relative Schwankung der inneren Energie $\sigma_U/\langle U \rangle$ für große Teilchenzahlen N? Beachten Sie, dass sowohl $C_{\mathcal{V}}$ als auch U extensive Größen sind. Kann $C_{\mathcal{V}}$ negativ werden ?

36. Volumen einer hochdimensionalen Kugel

i. Zeigen Sie, dass das Volumen einer Kugel mit Radius R in D Dimensionen gegeben ist durch

$$\mathcal{V}_D(R) = \frac{\pi^{D/2}}{\Gamma(\frac{D}{2} + 1)} R^D, \tag{1}$$

wobei $\Gamma(x) \equiv \int_0^\infty t^{x-1} e^{-t} dt$ die Gamma-Funktion ist (s. Aufgabe 27.).

Hinweis: Berechnen Sie dazu das D-dimensionale Gauß-Integral

$$\mathcal{I}_D \equiv \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} e^{-(x_1^2 + \dots + x_D^2)} dx_1 \cdots dx_D$$

einmal in kartesischen und einmal in Kugelkoordinaten. Der Fall D=3 kann hilfreich sein, um den Zusammenhang mit dem Volumen $\mathcal{V}_D(R)$ zu sehen.

ii. Wie groß ist das Volumen in einer D-dimensionalen Kugelschale mit Innenradius 0,99R und Außenradius R im Verhältnis zum Volumen der Kugel? Wie groß ist der Anteil des Volumens der Kugelschale zum Volumen der Kugel in D=3,10,100,1000 Dimensionen?

37. Quantenstatistischer Virialsatz

Der Hamilton-Operator für ein quantenmechanisches System aus N wechselwirkungsfreien Teilchen in einem äußeren Potential $V(\vec{r})$ ist gegeben durch

$$\hat{\mathbf{H}} = \hat{\mathbf{H}}_{kin} + \hat{\mathbf{H}}_{pot} \quad \text{mit} \quad \hat{\mathbf{H}}_{kin} = \sum_{i=1}^{N} \frac{\hat{\vec{\mathbf{p}}}_{i}^{2}}{2m} \quad \text{und} \quad \hat{\mathbf{H}}_{pot} = \sum_{i=1}^{N} V(\hat{\vec{\mathbf{r}}}_{i}), \tag{2}$$

wobei \hat{H}_{kin} den kinetischen und \hat{H}_{pot} den potentiellen Anteil bezeichnet.

i. Es sei \hat{A} ein beliebiger hermitescher Operator auf dem Hilbert-Raum des Systems. Zeigen Sie, dass der Erwartungswert im thermischen Gleichgewicht des Kommutators von \hat{A} mit dem Hamilton-Operator verschwindet, d.h. $\langle [\hat{A}, \hat{H}] \rangle = 0$.

ii. Es sei
$$\hat{\mathsf{A}} = \sum_{i=1}^N \hat{\vec{\mathsf{r}}}_i \cdot \hat{\vec{\mathsf{p}}}_i$$
. Zeigen Sie mit Hilfe von i., dass $\langle \hat{\mathsf{H}}_{kin} \rangle = \frac{1}{2} \sum_{i=1}^N \left\langle \hat{\vec{\mathsf{r}}}_i \cdot \vec{\nabla} V(\hat{\vec{\mathsf{r}}}_i) \right\rangle$.

- iii. Betrachten Sie als äußeres Potential einen harmonischen Oszillator der Form $V(\vec{r}) = \frac{1}{2}m\omega\vec{r}^2$. Zeigen Sie mit Hilfe des Virialsatzes aus ii., dass der Erwartungswert im thermischen Gleichgewicht der kinetischen Energie gleich dem Erwartungswert der potentiellen Energie ist.
- iv. Wählen Sie nun als äußeres Potential das Coulomb-Potential $V(\vec{r}) = -\alpha/|\vec{r}|$. Zeigen Sie, dass für dieses Potential die Relation $\langle \hat{\mathsf{H}}_{\rm kin} \rangle = -\frac{1}{2} \langle \hat{\mathsf{H}}_{\rm pot} \rangle$ gilt.

Frohe Weihnachtsfeiertage und einen guten Rutsch!