Tutorial sheet 6

6. Evolution equations for the statistical operator

The statistical operator $\hat{\rho}$ of a quantum-mechanical system governed by the Hermitian Hamiltonian $\hat{H}(t)$ satisfies the Liouville–von Neumann equation

$$\frac{\mathrm{d}\hat{\rho}(t)}{\mathrm{d}t} = \frac{1}{\mathrm{i}\hbar} \left[\hat{\mathsf{H}}(t), \hat{\rho}(t)\right] \tag{1}$$

where $[\cdot, \cdot]$ denotes the commutator of two operators. In this exercise we derive several useful results that will be used in the lectures.

i. Schrödinger picture

Let $\hat{U}(t, t_0)$ denote the unitary time-evolution operator between the times t_0 and t associated with the Hamiltonian $\hat{H}(t)$, such that the state vector $|\Psi(t)\rangle$ for the system at time t is related to the state vector at t_0 by $|\Psi(t)\rangle = \hat{U}(t, t_0) |\Psi(t_0)\rangle$.

Recall which differential equation (and with which initial condition) is fulfilled by $U(t, t_0)$. Show that $\hat{U}(t, t_0)$ also relates the values of the statistical operator at t_0 and t:

$$\hat{\rho}(t) = \hat{\mathsf{U}}(t, t_0)\hat{\rho}(t_0)\hat{\mathsf{U}}(t, t_0)^{\dagger}.$$
(2)

ii. Interaction picture

Assume that the Hamiltonian is of the form $\hat{H}(t) = \hat{H}_0 + \hat{W}(t)$ where \hat{H}_0 is time independent. The interaction-picture representation of the statistical operator is related to its Schrödinger representation $\hat{\rho}(t)$ by

$$\hat{\rho}_{\mathrm{I}}(t) = \mathrm{e}^{\mathrm{i}\hat{\mathsf{H}}_{0}t/\hbar} \,\hat{\rho}(t) \,\mathrm{e}^{-\mathrm{i}\hat{\mathsf{H}}_{0}t/\hbar} \tag{3}$$

(which as you may check is consistent with the interaction-representation $|\Psi(t)\rangle_{I} \equiv e^{i\hat{H}_{0}t/\hbar} |\Psi(t)\rangle$ of state vectors).

a) Which differential equation of the Liouville–von Neumann type is obeyed by $\hat{\rho}_{I}(t)$? Compare with the equation governing the evolution of $|\Psi(t)\rangle_{I}$. (*Hint:* You may want to introduce the interaction representation $\hat{W}_{I}(t) = e^{i\hat{H}_{0}t/\hbar} \hat{W}(t) e^{-i\hat{H}_{0}t/\hbar}$.)

b) Propose a formal solution of the form (2) to the evolution equation you found in question **a**), using an appropriate unitary operator $\hat{U}_{I}(t, t_{0})$ which you should specify. Again, you may check the consistency with the time evolution of $|\Psi(t)\rangle_{I}$.

c) Check that the usual formula involving the statistical operator to express the expectation value of an observable \hat{O} can also be used in interaction picture, provided one uses $\hat{\rho}_{I}(t)$ and the interaction representation $\hat{O}_{I}(t)$ — whose expression in terms of \hat{O} you can probably guess by now.

iii. Instead of expressing the statistical operator with the help of the time evolution operator as in Eq. (2), one can write down a formal solution of Eq. (1) in integral form. Indeed, check that integrating the Liouville–von Neumann equation (in Schrödinger picture) between times t_0 and t leads first to

$$\hat{\rho}(t) = \hat{\rho}(t_0) + \frac{1}{\mathrm{i}\hbar} \int_{t_0}^t \left[\hat{\mathsf{H}}(t'), \hat{\rho}(t')\right] \mathrm{d}t',\tag{4}$$

and equivalently to

$$\hat{\rho}(t) = \hat{\rho}(t_0) + \frac{1}{i\hbar} \int_{t_0}^t \left[\hat{H}(t'), \hat{\rho}(t_0) \right] dt' + \frac{1}{(i\hbar)^2} \int_{t_0}^t \left\{ \int_{t_0}^{t'} \left[\hat{H}(t'), \left[\hat{H}(t''), \hat{\rho}(t'') \right] \right] dt'' \right\} dt'.$$
(5)

Of course, one can write similar relations in interaction representation.