
i. Phase space trajectory of a classical harmonic oscillator
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one deduces the Hamilton equations
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with the (known) solution
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which corresponds to an ellipse in phase space. Inverting these relations, one can write
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ii. Quantum harmonic oscillator
a) The only nonvanishing odd derivative of the potential V (x) = 1
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evolution equation for the Wigner distribution of the quantum harmonic oscillator becomes (keeping
only the term n = 0 in the sum)
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b) In the case of the classical harmonic oscillator, a system which is at the phase-space point
�
x(t), p(t)

�

at time t was (or will be!) at (x0, p0) given by relation (4) at time t0. This suggests the following ansatz
for the Wigner distribution of the quantum harmonic oscillator:
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with the interpretation that what is found at (x, p) at time t corresponds to what is at
�
x0(x, p), p0(x, p)
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at time t0.
One can indeed compute the derivatives of the r.h.s. of Eq. (6) with respect to t
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[where the notation
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stands for the arguments on the r.h.s. of Eq. (6)], to x
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and eventually with respect to p
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from which one sees that these derivatives satisfy Eq. (5).



c) We consider the Wigner distribution
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for various values of ⇠ > 0. The profiles of the Wigner distributions with ⇠ = 1 (left) and ⇠ = 3 (right)
at the four successive times t = t0 + n⇡/2!, n 2 {0, 1, 2, 3} are shown below.

In both plots, the distribution at time t0 is that centered about (x̄0 = 5, p = 0), and the state moves
clockwise about the phase-space origin (see the notebook for a “movie” of the time evolution).

In the case ⇠ = 1, one finds that the distribution (7) can be rewritten as
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i.e. as the product of a Gaussian in p times another Gaussian in x. The integral over momentum space
is thus straightforward and yields the position probability distribution
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One sees at once that this probability is a Gaussian distribution with constant width
p
~/2m! centered

about the oscillating average value x̄0 cos[!(t� t0)].
In contrast, for ⇠ = 3 the position probability distribution oscillates between �x̄0 and x̄0 with a

time-dependent width (and height).


