i. Phase space trajectory of a classical harmonic oscillator
Starting from the Hamilton function
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one deduces the Hamilton equations
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with the (known) solution
x(t) = zo cos[w(t — to)] + % sinjw(t —t9)] , p(t) = po cos[w(t — to)] — mwzgsinfw(t —to)]  (3)

which corresponds to an ellipse in phase space. Inverting these relations, one can write

p(t)

xo = x(t) cos[w(t — to)] — o sinfw(t —to)] , po=p(t)cosjw(t —to)] + mwz(t)sinfw(t — to)]. (4)

ii. Quantum harmonic oscillator

a) The only nonvanishing odd derivative of the potential V(z) = $mw?x? is the first one, so that the
evolution equation for the Wigner distribution of the quantum harmonic oscillator becomes (keeping
only the term n = 0 in the sum)
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b) In the case of the classical harmonic oscillator, a system which is at the phase-space point (:L‘(t), p(t))
at time ¢ was (or will be!) at (xo,po) given by relation at time tg. This suggests the following ansatz
for the Wigner distribution of the quantum harmonic oscillator:

pw(t,z,p) = pw <t0, 2 coslw(t — to)] — - sinfw(t — to)], p cos|w(t — to)] + mwa sinfw(t — to)]>, (6)
mw
with the interpretation that what is found at (z,p) at time ¢ corresponds to what is at (zo(z, p), po(z, p))

at time .
One can indeed compute the derivatives of the r.h.s. of Eq. @ with respect to ¢

W =— (wx sinfw(t — to)] + % cos[w(t — to)]> apa";‘o
+ (—wp sinfw(t — t)] + mw?z cos[w(t — to)]> apgg‘o,
[where the notation ‘0 stands for the arguments on the r.h.s. of Eq. @], to x
W — coslu(t - to)]apg;’o + muwsinfw(t - to>]a’g;|°,
and eventually with respect to p
5PW(81;;$,1?) = _sin[wr(;fw— fo) apavi‘o + cos|w(t — to)] 82?07

from which one sees that these derivatives satisfy Eq. .



c) We consider the Wigner distribution
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pw (t,z,p) = Wih exp [—% (p cos|w(t — tg)] + mwz sinjw(t — to)]>
2
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for various values of & > 0. The profiles of the Wigner distributions with £ =1 (left) and £ = 3 (right)
at the four successive times t = tg + nw/2w,n € {0, 1,2, 3} are shown below.

In both plots, the distribution at time ¢y is that centered about (Zy = 5, p = 0), and the state moves
clockwise about the phase-space origin (see the notebook for a “movie” of the time evolution).

In the case £ = 1, one finds that the distribution can be rewritten as

pw(t.z.p) = - exp [—ﬁ (p-+ mwzusinft - to)])2 - 2 (- oot - to)])2] C®

i.e. as the product of a Gaussian in p times another Gaussian in x. The integral over momentum space
is thus straightforward and yields the position probability distribution

p(t,z) E/pw(t, z,p)dp = \/%exp [—% ($ — Zg cos[w(t — to)]>2] : (9)

One sees at once that this probability is a Gaussian distribution with constant width /f/2mw centered
about the oscillating average value Z cos[w(t — tp)].

In contrast, for £ = 3 the position probability distribution oscillates between —zg and Zy with a
time-dependent width (and height).



