Tutorial sheet 4

4. Wigner distribution of the one-dimensional harmonic oscillator

Consider a particle without spin propagating in one dimension in a quadratic potential, described by the Hamilton operator

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2.$$
(1)

i. Compute the Wigner distribution for the case where the particle is **a**) in the ground state; **b**) in the first excited state. The corresponding wave functions in position representation are

$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-m\omega x^2/2\hbar} \qquad , \qquad \psi_1(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \sqrt{\frac{2m\omega}{\hbar}} x e^{-m\omega x^2/2\hbar}.$$
 (2)

Check that the respective values of $\rho_{\rm W}^{(n)}$ (here with n = 0 or 1) at (x, p) = (0, 0) match those that you calculated (actually, in the 3D case) in the lecture on May 5 for wave functions with a given parity. Plot $\rho_{\rm W}^{(0)}$ and $\rho_{\rm W}^{(1)}$ (3-dimensional plots), using the values $\hbar = 1$ and $m\omega = 1$.

ii. Using the (simple!) Wigner transform H_W of the Hamiltonian (1) and the Wigner distribution $\rho_W^{(0)}$, compute the expectation value of the energy in the ground state. Discuss (critically!) your result.

iii. One can show (you may try to prove it) that the Wigner transform of \hat{H}^2 for the Hamiltonian (1) is $(f_{\pm})^2$

$$(H^2)_{\rm W}(x,p) = [H_{\rm W}(x,p)]^2 - \frac{(\hbar\omega)^2}{4}.$$
 (3)

Compute (in Wigner representation) the expectation value of \hat{H}^2 in the ground state. Compare with the square of the expectation value you found in **iii.** and discuss.