
Spring term 2021 Extra Topics in Quantum Mechanics Universität Bielefeld

Tutorial sheet 3

Discussion topic: What is the Berry phase?

3. Berry curvature
For a system with a Hamilton operator Ĥ[R(t)] depending on D time-dependent parameters {Ri(t)}

collectively denoted R(r), the Berry phase γ̄n for the n-th eigenstate when the system adiabatically
describes a closed path C in parameter space reads

γ̄n = i
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where |ψn(R)
〉
denotes a normalized eigenvector associated with the n-th eigenvalue En(R) of Ĥ[R].

Invoking Stokes’ theorem, the line integral of the Berry connection can be replaced by an integral over
a surface S bounded by C of the Berry curvature, defined as a D-dimensional antisymmetric rank-2
tensor BBBn(R) with components
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i. Check that the components (2) of the Berry curvature can be expressed as
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What does this give in case the eigenvector ψn(R) is real?

ii. Show that the component (4) can be rewritten as

BBBjkn (R) = i
∑
n′ 6=n
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where the second term denoted (j ↔ k) in the numerator follows from the first term after exchanging
the indices j and k. How does the Berry curvature change if the Hamilton operator is multiplied by a
real number λ 6= 0?

iii. What is the “total Berry curvature”
∑

nBBB
jk
n (R) of the system?

Hint : You may first try with a 2-level system to get an idea of the result.
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