Universität Bielefeld

Tutorial sheet 3

Discussion topic: What is the Berry phase?

3. Berry curvature

For a system with a Hamilton operator $\hat{H}[\mathbf{R}(t)]$ depending on \mathcal{D} time-dependent parameters $\{R_i(t)\}$ collectively denoted $\mathbf{R}(r)$, the Berry phase $\bar{\gamma}_n$ for the *n*-th eigenstate when the system adiabatically describes a closed path \mathcal{C} in parameter space reads

$$\bar{\gamma}_n = i \oint_{\mathcal{C}} \langle \psi_n(\boldsymbol{R}) \big| \boldsymbol{\nabla}_{\boldsymbol{R}} \psi_n(\boldsymbol{R}) \rangle \cdot d\boldsymbol{R} \quad \text{with} \quad \boldsymbol{\mathcal{A}}_n(\boldsymbol{R}) \equiv i \langle \psi_n(\boldsymbol{R}) \big| \boldsymbol{\nabla}_{\boldsymbol{R}} \psi_n(\boldsymbol{R}) \rangle, \tag{1}$$

where $|\psi_n(\mathbf{R})\rangle$ denotes a normalized eigenvector associated with the *n*-th eigenvalue $E_n(\mathbf{R})$ of $\hat{H}[\mathbf{R}]$. Invoking Stokes' theorem, the line integral of the Berry connection can be replaced by an integral over a surface S bounded by C of the Berry curvature, defined as a \mathcal{D} -dimensional antisymmetric rank-2 tensor $\mathcal{B}_n(\mathbf{R})$ with components

$$\boldsymbol{\mathcal{B}}_{n}^{jk}(\boldsymbol{R}) \equiv \frac{\partial}{\partial R_{j}} \boldsymbol{\mathcal{A}}_{n}^{k}(\boldsymbol{R}) - \frac{\partial}{\partial R_{k}} \boldsymbol{\mathcal{A}}_{n}^{j}(\boldsymbol{R}).$$
⁽²⁾

i. Check that the components (2) of the Berry curvature can be expressed as

$$\boldsymbol{\mathcal{B}}_{n}^{jk}(\boldsymbol{R}) = \mathrm{i} \left[\left\langle \frac{\partial \psi_{n}(\boldsymbol{R})}{\partial R_{j}} \middle| \frac{\partial \psi_{n}(\boldsymbol{R})}{\partial R_{k}} \right\rangle - \left\langle \frac{\partial \psi_{n}(\boldsymbol{R})}{\partial R_{k}} \middle| \frac{\partial \psi_{n}(\boldsymbol{R})}{\partial R_{j}} \right\rangle \right]. \tag{3}$$

What does this give in case the eigenvector $\psi_n(\mathbf{R})$ is real?

ii. Show that the component (4) can be rewritten as

$$\boldsymbol{\mathcal{B}}_{n}^{jk}(\boldsymbol{R}) = i \sum_{n' \neq n} \frac{\left\langle \psi_{n}(\boldsymbol{R}) \middle| \partial \hat{H} / \partial R_{j} \middle| \psi_{n'}(\boldsymbol{R}) \right\rangle \left\langle \psi_{n'}(\boldsymbol{R}) \middle| \partial \hat{H} / \partial R_{k} \middle| \psi_{n}(\boldsymbol{R}) \right\rangle - (j \leftrightarrow k)}{\left[E_{n}(\boldsymbol{R}) - E_{n'}(\boldsymbol{R}) \right]^{2}},$$
(4)

where the second term denoted $(j \leftrightarrow k)$ in the numerator follows from the first term after exchanging the indices j and k. How does the Berry curvature change if the Hamilton operator is multiplied by a real number $\lambda \neq 0$?

iii. What is the "total Berry curvature" $\sum_{n} \mathcal{B}_{n}^{jk}(\mathbf{R})$ of the system?

Hint: You may first try with a 2-level system to get an idea of the result.