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Tutorial sheet 9

Discussion topic: Langevin model of Brownian motion

22. Examples of Markov processes
The lecture introduced the so-called Markov processes, which are entirely determined by their single-

time density p
Y,1

and their conditional probability density p
Y,1|1. The latter, which is referred to as

transition probability , obeys the Chapman–Kolmogorov equation

p
Y,1|1(t3, y3 | t1, y1) =

∫
p
Y,1|1(t3, y3 | t2, y2) p

Y,1|1(t2, y2 | t1, y1) dy2 for t1 < t2 < t3, (1)

to be compared with Eq. (1) of exercise 20.

i. Wiener process
The stochastic process defined by the “initial condition” p

Y,1
(t=0, y) = δ(y) for y ∈ R and the transition

probability (0 < t1 < t2)

p
Y,1|1(t2, y2 | t1, y1) =

1√
2π(t2 − t1)

exp

[
− (y2 − y1)2

2(t2 − t1)

]
is called Wiener process.

Check that this transition probability obeys the Chapman–Kolmogorov equation, and that the
probability density at time t > 0 is given by

p
Y,1

(t, y) =
1√
2πt

e−y
2/2t.

Remark: Note that the above single-time probability density is solution of the diffusion equation

∂f

∂t
=

1

2

∂2f

∂y2

with diffusion coefficient D = 1
2 .

ii. Ornstein–Uhlenbeck process
The so-called Ornstein–Uhlenbeck process is defined by the time-independent single-time probability
density

p
Y,1

(y) =
1√
2π

e−y
2/2

and the transition probability (τ > 0)

p
Y,1|1(t+ τ, y | t, y0) =

1√
2π(1− e−2τ )

exp

[
− (y − y0e−τ )2

2(1− e−2τ )

]
.

a) Check that this transition probability fulfills the Chapman–Kolmogorov equation, so that the
Ornstein–Uhlenbeck process is Markovian. Show that the process is also Gaussian, stationary, and that
its autocorrelation function is κ(τ) = e−τ .
b) What is the large-τ limit of the transition probability? And its limit when τ goes to 0+?
c) Viewing the above transition probability as a function of τ and y, can you find a partial differential
equation, of which it is a (fundamental) solution?
Hint : Let yourself be inspired(?) by the remark at the end of question i.
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23. Vibrating string
Consider a weightless elastic string, whose extremities are fixed at points x = 0 and x = L along the

x-axis. Let y(x) denote the displacement of the string transverse to this axis—for the sake of simplicity,
we can assume that this displacement is one-dimensional—at position x. For small displacements, one
can show that the elastic energy associated with a given profile y(x) reads

E[y(x)] =

∫ L

0

1

2
k

[
dy(x)

dx

]2
dx, (2)

with k a positive constant.
When the string undergoes thermal fluctuations, induced by its environment at temperature T , y(x)

becomes a random function (of position, instead of time), where one expects that the probability for a
given y(x) should be proportional to e−βE[y(x)] with β = 1/kBT . Here, we wish to consider a discretized
version of the problem and view y(x) as the realization of a stochastic function Y (x).

i. Let n ∈ N. Consider n points 0 < x1 < x2 < · · · < xn < L and let yj be the displacement of
the string at point xj . Write down the energy of the string, assuming that it is straight between two
successive points xj , xj+1.
Hint : For the sake of brevity, one can introduce the notations x0 = 0, xn+1 = L, y0 = yn+1 = 0.

ii. We introduce the n-point probability density

p
n
(x1, y1; . . . ;xn, yn) =

√
2πL

kβ

n∏
j=0

√
kβ

2π(xj+1 − xj)
exp

[
− kβ

2

(yj+1 − yj)2

xj+1 − xj

]
,

which for large n, agrees with the anticipated factor e−βE[y(x)] (are you convinced of that?).
Show that the various p

n
satisfy the 4 properties of n-point densities given in the lecture. Write

down the single-point and two-point averages 〈Y (x1)〉 and 〈Y (x1)Y (x2)〉, as well as the autocorrelation
function. Which properties does the process possess?
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