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19. Electrical conductivity in a magnetic field: Hall effect
This exercise is a sequel to exercise 17, yet tackles the problem differently. We again consider the

problem of electric conduction in a metal. We now assume that the conductor subject to the electric
and magnetic fields ~E , ~B is a rectangular parallelepiped, with its sides along the coordinate axes. Let
L, l, and d be the respective lengths of the sides parallel to the x-, y and z-directions.

i. Drude–Lorentz model
To model the effect of collisions in a simple way, one introduces an “average equation of motion” for the
conduction electrons—i.e., an evolution equation for their average velocity 〈~v〉

d〈~v〉
dt

= −〈~v〉
τr
− e

me

(
~E + 〈~v〉 × ~B

)
.

Give a physical interpretation for this equation. Check that in the stationary regime one has

〈vx〉 = −
eτr
me

Ex − ωτr〈vy〉 , 〈vy〉 = −
eτr
me

Ey + ωτr〈vx〉 ,

with ω the Larmor frequency defined in exercise 17. Show that if one takes τr = τF, one recovers the
same expression for the conductivity tensor as in exercise 17.

ii. Calculate in terms of Ex the value EH of Ey which cancels (Jel.)y. Verify that the transport of
electrons in that situation is the same as in the case ~B = ~0, in other words (Jel.)x = σel.Ex. The field
intensity EH is called Hall field , and the Hall resistance is defined by

RH ≡
VH
I

where VH is the Hall voltage, VH/l = EH, and I the total electric current along the x direction. Show
that RH is given by

RH =
B

nde
,

with n the density of conduction electrons and B ≡ | ~B|. By noting that RH is independent of the
relaxation time, find its expression using an elementary argument.

20. Stochastic processes
Let Y (t) be a stochastic process and p

Y,n
resp. p

Y,n|m its n-point resp. conditional n-point densities.

i. Starting from the expression of Bayes’ theorem, show that for all integers n ≥ 2 one can write

p
Y,n

(t1, y1; . . . ; tn, yn) = p
Y,1|n−1(tn, yn| t1, y1; . . . ; tn−1, yn−1)

× p
Y,1|n−2(tn−1, yn−1| t1, y1; . . . ; tn−2, yn−2) · · · p

Y,1|1(t2, y2| t1, y1) p
Y,1

(t1, y1),

where the n instants t1, t2, . . . , tn are all different, but otherwise arbitrary.

ii. Consider the previous identity for n = 3. Using the consistency condition which expresses p
Y,m

as
an integral of p

Y,n
with n > m, here with m = 2, show that the single-time conditional density p

Y,1|1
obeys the integral-functional equation

p
Y,1|1(t3, y3| t1, y1) =

∫
p
Y,1|2(t3, y3| t1, y1; t2, y2) p

Y,1|1(t2, y2| t1, y1) dy2. (1)

Generalize this relation to an equation for p
Y,1|n involving p

Y,1|n+1
.
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21. Characteristic functional of a stochastic process
In the lecture, the characteristic functional associated with a stochastic process YX(t) has been

defined as
GY [k(t)] ≡

〈
exp

[
i

∫
k(t)Y (t) dt

]〉
,

with k(t) a test function.
Expand the exponential in power series of k and express the characteristic functional in terms of

the n-time moments. How would you write the moment 〈Y (t1)Y (t2) · · ·Y (tn)〉 as function of GY [k(t)]?
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