Tutorial sheet 6

Discussion topic: You may start educating yourself on the relativistic Boltzmann equation by looking at part A of the book by De Groot *et al.*.

14. Free streaming

Show that in the absence of collision term and of external potential—which defines *free streaming*—, the solution of the (collisionless!) Boltzmann equation satisfies the equation

$$\overline{\mathbf{f}}(t, \vec{r}, \vec{p}) = \overline{\mathbf{f}}(t=0, \vec{r} - \vec{v}t, \vec{p}) \tag{1}$$

with \vec{v} the velocity corresponding to momentum \vec{p} . That is, the solution at time t > 0 has a straightforward expression in terms of the initial condition at t = 0.

15. Linearized Boltzmann equation

Consider the kinetic Boltzmann equation in absence of an external potential for neutral particles with mass m interacting elastically with each other. One easily checks that the Maxwell–Boltzmann distribution

$$\bar{\mathsf{f}}^{(0)}(\vec{p}) = n \left(\frac{2\pi\hbar^2}{mk_BT}\right)^{3/2} \mathrm{e}^{-\vec{p}^2/2mk_BT}$$
(2)

with constant T is a solution to the equation, whose integral over momentum¹ gives a uniform particlenumber density n. In the following, we consider small perturbations

$$\bar{\mathbf{f}}(t,\vec{r},\vec{p}) = \bar{\mathbf{f}}^{(0)}(\vec{p}) \left[1 + h(t,\vec{r},\vec{p}) \right]$$
(3)

away from the "equilibrium" solution (2), where quadratic terms in h will be systematically neglected.

i. Show that h obeys the linearized Boltzmann equation

$$\left(\frac{\partial}{\partial t} + \vec{v}_1 \cdot \vec{\nabla}_{\vec{r}}\right) h(t, \vec{r}, \vec{p}_1) = \mathcal{I}_{\text{coll.}}(h)$$
(4a)

where $\mathcal{I}_{\text{coll.}}(h)$ is the (linear) collision operator

$$\mathcal{I}_{\text{coll.}}(h) \equiv \int_{\vec{p}_2} \int_{\vec{p}_3} \int_{\vec{p}_4} \bar{\mathsf{f}}^{(0)}(\vec{p}_2) \Big[h(t, \vec{r}, \vec{p}_3) + h(t, \vec{r}, \vec{p}_4) - h(t, \vec{r}, \vec{p}_1) - h(t, \vec{r}, \vec{p}_2) \Big] \widetilde{\boldsymbol{w}}(\vec{p}_1, \vec{p}_2 \to \vec{p}_3, \vec{p}_4), \quad (4b)$$

where the same notations as in the lectures were used.

ii. Mathematical results

Consider spatially homogeneous perturbations $h(t, \vec{p})$. To investigate their behavior it is interesting to look at the eigenfunctions ψ_i and eigenvalues λ_i of the collision operator $\mathcal{I}_{\text{coll.}}$, defined by

$$\mathcal{I}_{\text{coll.}}(\psi_i) = \lambda_i \psi_i. \tag{5}$$

It will be assumed that the integral $\int_{\vec{p}_1} \tilde{\mathbf{f}}^{(0)}(\vec{p}_1) \left[\psi_i(\vec{p}_1)\right]^2$ exists for every eigenfunction.

a) Show that $\lambda = 0$ is a fivefold degenerate eigenvalue and give (the) corresponding eigenfunctions $\psi_1(\vec{p}_1), \ldots, \psi_5(\vec{p}_1)$ (disregarding any normalization).

Hint: You do not need to know the transition rate \tilde{w} to answer this question, which means that the eigenfunctions are determined by fundamental properties of the collisions.

 $^{^1...}$ with integration measure ${\rm d}^3\vec{p}/(2\pi\hbar)^3$

b) Show that all other eigenvalues are negative.

Hint: You may express λ_i in terms of the integral $\int_{\vec{p}_1} \bar{f}^{(0)}(\vec{p}_1) \psi_i(\vec{p}_1) \mathcal{I}_{\text{coll.}}(\psi_i)$, which you can transform as in the proof of the *H*-theorem.

c) Consider the linearized Boltzmann equation (4a) in the spatially homogeneous case. Assuming that the eigenfunctions form a complete set, write down the solution $h(t, \vec{p}_1)$ as a linear combination of the $\{\psi_i(\vec{p}_1)\}$. How can you interpret the quantities $-1/\lambda_i$ for the non-vanishing eigenvalues?

16. Boltzmann equation in cylindrical coordinates

Physical problems often have symmetries (axial, spherical...) which suggest the use of appropriate, non-Cartesian coordinates. For instance, one may wish to use cylindrical coordinates (r, θ, z) such that

$$\vec{r} = x \,\vec{\mathbf{e}}_x + y \,\vec{\mathbf{e}}_y + z \,\vec{\mathbf{e}}_z = r \,\vec{\mathbf{e}}_r + z \,\vec{\mathbf{e}}_z$$

with $r = \sqrt{x^2 + y^2}$ and $\vec{\mathbf{e}}_r = \cos\theta \,\vec{\mathbf{e}}_x + \sin\theta \,\vec{\mathbf{e}}_y$. Let $\vec{\mathbf{e}}_\theta \equiv \vec{\mathbf{e}}_z \times \vec{\mathbf{e}}_r = -\sin\theta \,\vec{\mathbf{e}}_x + \cos\theta \,\vec{\mathbf{e}}_y$. Show that the collisionless Boltzmann equation in absence of any external potential reads

$$\left[\frac{\partial}{\partial t} + v^r \frac{\partial}{\partial r} + \frac{v^{\theta}}{r} \frac{\partial}{\partial \theta} + v^z \frac{\partial}{\partial z} + \frac{(v^{\theta})^2}{r} \frac{\partial}{\partial v^r} - \frac{v^r v^{\theta}}{r} \frac{\partial}{\partial v^{\theta}}\right] \overline{\mathbf{f}}_{\vec{v}}(t, r, \theta, z, v^r, v^{\theta}, v^z) = 0$$

where $\vec{v} = v^r \vec{e}_r + v^\theta \vec{e}_\theta + v^z \vec{e}_z$, while $\vec{f}_{\vec{v}}$ here denotes the density on position-velocity space, instead of phase space. Discuss the last two terms in the angular brackets.

Remark: The apparent singularity in r = 0 of the factors 1/r in the above equation is obviously an artifact, since in fact $v^{\theta} = r\dot{\theta}$.