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Tutorial sheet 4

Discussion topics:
- Classical Liouville operators
- BBGKY hierarchy; single-particle kinetic equations

9. Liouville operator in classical mechanics
The lecture introduced the Liouville operator L, acting on functions on the N -particle phase space

Γ with canonical variables ({qi}, {pi}). Let d6NV ∝
∏

i dqi dpi denote a uniform measure on Γ, as e.g.
that used in the lecture.

i. Hermiticity of L
Consider two functions g({qi}, {pi}), h({qi}, {pi}) which vanish sufficiently rapidly at infinity; let g∗,
h∗ denote the complex conjugate functions. Show that∫

Γ
g∗({qi}, {pi})Lh({qi}, {pi}) d6NV =

∫
Γ
(Lg)∗({qi}, {pi})h({qi}, {pi}) d6NV .

Recognizing in the integral of g∗h over Γ an inner product, which can be denoted as 〈g, h〉, the identity
can be recast as 〈g,Lh〉 = 〈Lg, h〉, which expresses the property that the Liouville operator is Hermitian1

for this inner product.

ii. Unitarity of e±iL

Show that the operator eiL acting on phase-space functions is unitary.

10. Collisionless evolution of the single-particle phase space density
Let f1(t, ~r, ~p) denote the single-particle phase space density of a system of non-interacting particles

with massm evolving in the absence of long-range interactions deriving from a vector potential. Consider
the particles which are at time t in an infinitesimal volume element d3~r d3~p around the point (~r, ~p).

Where are these particles at the instant t+ dt? Show that the volume element d3~r ′ d3~p ′ which they
then occupy equals (to leading order in dt) d3~r d3~p. Derive the partial differential equation governing
the evolution of f1.

11. Two-particle phase space density in a classical ideal gas
The purpose of this exercise is to show that even in a classical ideal gas of identical particles, (small)

correlations between particles arise when their total number N is fixed.

i. Canonical equilibrium
Consider first the case of a classical gas of N non-interacting identical particles, each of which is
described by a Hamilton function h, so that the total Hamilton function reads

HN = h(1) + h(2) + · · ·+ h(N),

where for the sake of brevity the positions and momenta of the particles have been denoted by the
particle label. At thermodynamic equilibrium, the canonical partition function for this gas is

ZN (β,V ) =

[
Z1(β,V )

]N
N !

,

with Z1 the partition function for a single particle—which need not be specified hereafter.
1... according to the physicists’ denomination; mathematicians may prefer “self-adjoint”.
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a) Compute first the single-particle phase space density f1(~r1, ~p1).
b) Write down the two-particle phase space density f2(~r1, ~p1, ~r2, ~p2). How does it compare to the
product of the single-particle densities for particles 1 and 2?

ii. Grand canonical equilibrium
The number of particles in the gas is now allowed to vary, so that the proper description at thermo-
dynamic equilibrium takes place in the grand canonical ensemble, involving the “chemical” Lagrange
multiplier α = βµ.
a) Recall the expression of the grand canonical partition function Z(β,V , α) in terms of the canonical
partition functions ZN and α, then in terms of Z1 and α.
b) Derive the single-particle phase space density f1(~r1, ~p1).
Hint : Consider first the contribution to f1 coming from the case when the gas consists of N particles,
then carefully sum over all possible values of N .
c) Compute the two-particle phase space density f2(~r1, ~p1, ~r2, ~p2) and rewrite it as function of the
single-particle densities for particles 1 and 2. Compare with the result in the canonical approach.
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