
VI.B Classical linear response 151

VI.B Classical linear response
The linear response formalism can also be applied to systems which are described classically, as
e.g. fluids obeying hydrodynamical laws. Two parallel strategies can then be adopted: either to
consider the classical limit of the quantum-mechanical results, or to tackle the problem in the
classical framework from the beginning. In this section we give examples of both approaches, which
quite naturally lead to the same results.

VI.B.1 Classical correlation functions

Let A, B be classical observables associated with quantum-mechanical counterparts Â, B̂.
Using (without proof) the correspondence between quantum-mechanical and classical statistical-
mechanical expectation values, the non-symmetrized correlation function CBA(τ), Eq. (VI.12), be-
comes in the classical limit

classical limit of CBA(τ) =
〈
B(τ)A(0)

〉
eq.
≡ C cl.

BA(τ), (VI.126)

where the expectation value is a Γ-space integral computed with the proper equilibrium phase-space
distribution.

In the classical limit, operators become commuting numbers (“c-numbers”). Invoking the sta-
tionarity of the equilibrium state, one thus has

C cl.
BA(τ) = C cl.

AB(−τ), (VI.127)

in contrast to the quantum-mechanical case where the identity is between CBA(τ) and CAB(−τ)∗,
see Eq. (VI.15). In the case of autocorrelations (B = A), the non-symmetrized correlation func-
tion (VI.126) is even.

Fourier transforming both sides of relation (VI.127), one finds at once

C̃ cl.
BA(ω) = C̃ cl.

AB(−ω), (VI.128)

which is the classical limit ~ → 0 of the detailed balance relation, as was already discussed below
Eq. (VI.53).

Thanks to the commutativity of the A and B(τ), the classical limit of SBA(τ) is given by the
same correlation function

〈
B(τ)A(0)

〉
eq.

classical limit of SBA(τ) =
〈
B(τ)A(0)

〉
eq.

= C cl.
BA(τ). (VI.129)

Similarly, the various operators in the defining integral for Kubo’s canonical correlation functions
commute with each other in the classical limit, and one obtains

classical limit of KBA(τ) =
〈
B(τ)A(0)

〉
eq.

1

β

∫ β

0
dλ =

〈
B(τ)A(0)

〉
eq.

= C cl.
BA(τ). (VI.130)

We thus recover the fact that SBA and KBA have the same classical limit, as mentioned for their
Fourier transforms at the end of §VI.3.3 b.

Remark: More generally, even in the quantum-mechanical case if either Â or B̂ commutes with Ĥ0,
then the non-symmetrized, symmetric and canonical correlation functions CBA(τ), SBA(τ), KBA(τ)
are equal.

In contrast, the linear response function χBA(τ) and the Fourier transform ξBA(τ) of the spectral
function are proportional to commutators divided by ~, see Eqs. (VI.26) and (VI.19). In the classical
limit, these become proportional to some Poisson brackets, for instance [see also Eq. (VI.138b)
hereafter]

classical limit of ξBA(τ) =
i

2

〈{
BN (τ), AN

}〉
eq.
≡ ξcl.

BA(τ). (VI.131)
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VI.B.2 Classical Kubo formula

In this Subsection, we want to show how some results of linear response theory can be derived
directly in classical mechanics, instead of taking the limit ~→ 0 in quantum-mechanical results.

For that purpose, we consider(92) a system of N pointlike particles with positions and conjugate
momenta {qi}, {pi} with 1 ≤ i ≤ 3N . The Γ-space density and Hamilton function of this system
are denoted by ρN

(
t, {qi}, {pi}

)
and HN

(
t, {qi}, {pi}

)
. The latter arises from slightly perturbing a

time-independent Hamiltonian H(0)
N

(
{qi}, {pi}

)
:

HN

(
t, {qi}, {pi}

)
= H

(0)
N

(
{qi}, {pi}

)
− f(t)AN

(
{qi}, {pi}

)
, (VI.132)

with AN
(
{qi}, {pi}

)
an observable of the system and f(t) a time-dependent function which vanishes

as t→ −∞.
Let iL0 be the Liouville operator (II.11) associated to H(0)

N and ρeq. the N -particle phase-space
density corresponding to the canonical equilibrium of the unperturbed system

ρeq.

(
{qi}, {pi}

)
=

1

ZN (β)
e−βH

(0)
N ({qi},{pi}) with ZN (β) =

∫
e−βH

(0)
N ({qi},{pi}) d6NV , (VI.133)

where the Γ-space infinitesimal volume element is given by Eq. (II.4a). Averages computed with
ρeq. will be denoted as 〈 · 〉eq., those computed with ρN as 〈 · 〉n.eq..

Let BN
(
{qi}, {pi}

)
denote another observable of the system. We wish to compute its out-of-

equilibrium expectation value at time t, 〈BN (t, {qi}, {pi})〉n.eq., and in particular its departure from
the equilibrium expectation value 〈BN ({qi}, {pi})〉eq.. The latter is time-independent, as follows
from Eqs. (II.18)–(II.19) and the time-independence of ρeq..

For the sake of brevity we shall from now on drop the dependence of functions on the phase-space
coordinates {qi}, {pi}.

In analogy to the quantum-mechanical case (Sec. VI.2.1), we start by calculating the phase-space
density ρN (t), or equivalently its deviation from the equilibrium density

δρN (t) ≡ ρN (t)− ρeq.. (VI.134)

Writing ρN (t) = ρeq.+ δρN (t) and using the stationarity of ρeq. the Liouville equation (II.10b) for
the evolution of ρN (t)

dρN (t)

dt
+
{
ρN (t), HN (t)

}
= 0

gives for δρN (t) to leading order in the perturbation

dδρN (t)

dt
=
{
HN (t), δρN (t)

}
+
{
−f(t)AN , ρeq.

}
+O(f2)

= −iL0δρN (t)− f(t)
{
AN , ρeq.

}
+O(f2). (VI.135)

In the second line, we took f(t) outside of the Poisson brackets since it is independent of the
phase-space coordinates.

This is an inhomogeneous first-order linear differential equation, whose solution reads

δρN (t) = −
∫ t

−∞
e−i(t−t′)L0

{
AN , ρeq.

}
f(t′) dt′ +O(f2),

where we used f(−∞) = 0 which results in δρN (−∞) = 0. Again, the independence of f(t′) from
the Γ-space coordinates allows one to move it to the left of the time-translation operator e−i(t−t′)L0 .
Adding ρeq. to both sides then gives

ρN (t) = ρeq. −
∫ t

−∞
f(t′) e−i(t−t′)L0

{
AN , ρeq.

}
dt′ +O(f2). (VI.136)

(92)This is the generic setup of Sec. II.2.1.
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Multiplying this identity left with BN and integrating afterwards over phase space yields〈
BN (t)

〉
n.eq.

=
〈
BN
〉

eq.
−
∫ t

−∞
f(t′)

[∫
Γ
BN e−i(t−t′)L0

{
AN , ρeq.

}
d6NV

]
dt′ +O(f2). (VI.137)

Using the unitarity of e−i(t−t′)L0 , Eq. (II.20), the phase-space integral on the right-hand side can
be recast as ∫

Γ

[
ei(t−t′)L0BN

]{
AN , ρeq.

}
d6NV .

Invoking Eq. (II.17), the term between square brackets is then BN (t − t′) as would follow from
letting BN evolve under the influence of H(0)

N only .(93) Equation (VI.137) thus becomes〈
BN (t)

〉
n.eq.

=
〈
BN
〉

eq.
−
∫ t

−∞
f(t′)

[∫
Γ
BN (t− t′)

{
AN , ρeq.

}
d6NV

]
dt′ +O(f2).

By performing an integration by parts and using the fact that the phase-space distribution vanishes
at infinity, one checks that the integral over phase space of BN (t − t′)

{
AN , ρeq.

}
equals that of

ρeq.

{
BN (t− t′), AN

}
:〈

BN (t)
〉

n.eq.
=
〈
BN
〉

eq.
−
∫ t

−∞
f(t′)

[∫
Γ
ρeq.

{
BN (t− t′), AN

}
d6NV

]
dt′ +O(f2).

The phase-space integral in this relation is now simply the equilibrium expectation value of the
Poisson bracket

{
BN (t− t′), AN

}
. All in all, this gives〈

BN (t)
〉

n.eq.
=
〈
BN
〉

eq.
−
∫ t

−∞
f(t′)

〈{
BN (t− t′), AN

}〉
eq.

dt′ +O(f2)

=
〈
BN
〉

eq.
+

∫ ∞
−∞

f(t′)χcl.
BA(t− t′) dt′ +O(f2), (VI.138a)

with
χcl.
BA(τ) ≡ −

〈{
BN (τ), AN

}〉
eq.

Θ(τ). (VI.138b)

This result is—as it should be—what follows from the quantum-mechanical Kubo formula (VI.26)
when making the substitution

1

i~
[
· , ·

]
→
{
· , ·

}
.

(93)That is, corresponding to the interaction picture in the quantum mechanical case.


