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:::::::
VI.4.3 d

:::::::::::::::::::::::::
Caldeira–Leggett model

In the previous paragraph, we have seen that the phenomenological Langevin model for the
motion of a Brownian particle submitted to an external force yields correlation functions which do
not fulfill the sum rules of linear-response theory. This means that the model can actually not be
the macroscopic manifestation of an underlying microscopic dynamical model.(88)

From Sec. V.3.3, we already know that a classical heavy particle interacting with a bath of
classical independent harmonic oscillators—which constitutes a special case of the model introduced
in § VI.4.3 a—actually obeys a generalized Langevin equation when the bath degrees of freedom are
integrated out. Here we want to consider this model again, now in the quantum-mechanical case.

Since the dynamics along different directions decouple, we restrict the study to a one-dimensional
system, whose Hamilton operator is given by [cf. Eq. (V.68b)]
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x̂, p̂, M are the position, momentum and mass of the heavy particle, while x̂j , p̂j and mj denote
those of the harmonic oscillators, with resonant frequencies ωj , with which the particle interacts.

Equations of motion
The Heisenberg equation (II.37) for the position and momentum of the heavy particle read
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These equations are sometimes referred to as Heisenberg–Langevin equations.
The first term on the right hand side of the evolution equation for the momentum only depends

on the bath degrees of freedom. Introducing the ladder operators âj(t), â
†
j(t) of the bath oscillators,

it can be rewritten as
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The Heisenberg equation
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âj(t), Ĥ0
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obeyed by the annihilation operator for the j-th oscillator admits the solution
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with t0 an arbitrary initial time. Inserting this expression and its adjoint in Eq. (VI.109), the
evolution equation (VI.108b) becomes
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where the operator F̂L(t) is defined as
(88)More precisely, the Langevin equation cannot emerge as macroscopic limit valid on arbitrary time scales—or

equivalently for all frequencies—of an underlying microscopic theory, although it might constitute an excellent
approximation in a limited time / frequency range.
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This operator corresponds to a Langevin force, which only depends on freely evolving operators of
the bath.(89) In turn, the first term on the right-hand side of Eq. (VI.110a) describes a retarded
friction force exerted on the heavy particle by the bath, and due to the perturbation of the latter
by the former at earlier times.

Limiting case of a continuous bath
Introducing as in Sec. V.3.3 c the spectral density of the coupling to the bath
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and its continuous approximation Jc(ω) [cf. Eq. (V.75)] the retarded force in Eq. (VI.110a) becomes
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while the third term in that same equation can be rewritten as
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With a trivial change of integration variable from t′ to τ = t−t′ and some rewriting, the retarded
force (VI.112) becomes after exchanging the order of integrations
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Introducing the “memory kernel” [cf. Eq. (V.74)]
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and performing an integration by parts, in which the equation of motion (VI.108a) allows us to
replace the time derivative of x̂(t) by p̂(t)/M , the friction force becomes
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In many simple cases, corresponding to oscillator baths with a “short memory”, the kernel γ(τ)
only takes significant values in a limit range of size ω−1

c around τ = 0. As soon as |t−t0| � ω−1
c , the

term γ(t− t0) in the above equation then becomes negligible, while the upper limit of the integral
can be sent to +∞ without affecting the result significantly. Deducing γ(0) from Eq. (VI.114), the
friction force (VI.112) reads
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The first term on the right hand side is exactly the negative of Eq. (VI.113): putting everything
together, the evolution equation (VI.110a) takes the simple form of a generalized Langevin equation
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Dividing this equation byM , one obtains a similar evolution equation for the velocity operator v̂(t).
(89)One easily checks in a basis of energy eigenstates 〈âj(t0)〉eq. = 〈â†j(t0)〉eq. = 0 for all bath oscillators, which results

in 〈F̂L(t)〉eq. = 0.
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Generalized susceptibility
Let us add to the Hamiltonian (VI.107) a perturbation Ŵ = −Fext.(t)x̂(t) coupling to the position

of the Brownian particle. One easily checks that this perturbation amounts to adding an extra term
Fext.(t)1̂ on the right-hand side of Eq. (VI.115). Dividing the resulting equation by M , taking the
average, and Fourier transforming, one obtains the generalized susceptibility [cf. Eq. (V.62)]
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1

M

1

γ̃(ω)− iω
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where γ̃(ω) is given by
γ̃(ω) =

∫
γ(t) Θ(t) eiωt dt. (VI.116b)

The Caldeira–Leggett Hamiltonian (VI.107) is invariant under time reversal. As already seen
in § (VI.4.3 b), this leads to the proportionality between the spectral function ξ̃vx(ω) and the real
part of the generalized susceptibility χ̃vx(ω):

ξ̃vx(ω) = − i

M

Re γ̃(ω)

|γ̃(ω)− iω|2
.

If γ̃(ω) decreases quickly enough as |ω| goes to∞—which depends on the specific behavior of Jc(ω)
at infinity, see Eq. (VI.114)—, the spectral function ξ̃vx(ω) can have moments to all orders, which
can then obey the sum rules (VI.81).


